European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

The origins of thermonuclear supernova explosions

Description du projet

Remonter aux origines des explosions de supernovae thermonucléaires

Des milliers de fois plus énergétiques que les explosions stellaires ordinaires, leur lumière visible pouvant être aussi brillante que celle de toutes les étoiles de notre galaxie réunies, les supernovae font partie des événements les plus violents de l’Univers. Les supernovae de type Ia ont été considérées du point de vue théorique comme des explosions de naines blanches carbone-oxygène, les restes condensés d’anciennes étoiles autrefois semblables au soleil. Aucun des modèles suggérés ne parvient toutefois à reproduire leurs diverses caractéristiques physiques, ni leurs âges et luminosités présumés. Le projet SNeX, financé par l’UE, permettra d’élaborer de nouveaux scénarios probables concernant l’origine de tous les sous-types d’explosions thermonucléaires de supernovae de type Ia. Les résultats du projet apporteront une contribution essentielle à la compréhension de l’évolution de l’Univers et aux mesures de ses paramètres cosmologiques fondamentaux.

Objectif

Type-Ia supernovae (SNe) are thought to originate from thermonuclear explosions of carbon-oxygen (CO) white-dwarfs (WDs). They play a key role in the evolution of the universe (producing most of the Iron-peak elements); and serve as critical cosmological distance-indicators. The main proposed SNe progenitors are CO-WDs accreting material from stellar companions; and mergers of two CO-WDs. However, all suggested models fail to reproduce the diverse physical characteristics of Ia-SNe; their inferred rates/ages/luminosity distrbution; and their puzzling wide sub-types diversity. Finding the origins and the evolutionary pathways of thermonuclear SNe remains one of the most important “holy grail” open questions in modern astronomy. Here we propose novel directions and potential solutions to this question, and suggest new scenarios for the origin of all sub-types of thermonucelar SNe. Supported by preliminary results, we propose that (1) the little-explored mergers of CO-WDs with hybrid He-CO WDs play a key-role in producing most types of SNe, and may provide a viable model for the origin of the majority of thermonuclear SNe, their diversity and their distrbutions; (2) neutron star-WD mergers may explain the origin of peculiar rapidly evolving SNe; (3) the channel of exploding accretion-grown massive CO-WDs never/rarely gives rise to standard Ia-SNe. We propose an end-to-end open-source-based modelling of SNe (providing easy access and reproducibiliy of our results) including stellar evolution of their progenitors; 3D hydro simulations of WD mergers; 2D (+3D) thermonuclear-hydrodynamical+radiative-transfer models (predicting detailed light-curve/spectra/compostion observables); and population synthesis studies. Our proposed science can potentially transform the field; solve the century-long puzzle of Ia-SNe and explain their origins; and provide critical input for understanding the evolution of the universe and the measurements of its fundamental cosmological parameters.

Régime de financement

ERC-COG - Consolidator Grant

Institution d’accueil

TECHNION - ISRAEL INSTITUTE OF TECHNOLOGY
Contribution nette de l'UE
€ 2 000 000,00
Adresse
SENATE BUILDING TECHNION CITY
32000 Haifa
Israël

Voir sur la carte

Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 2 000 000,00

Bénéficiaires (1)