CORDIS
EU research results

CORDIS

English EN

Exoplanet Adaptive Characterization with the ELT

Project information

Grant agreement ID: 866001

Status

Grant agreement signed

  • Start date

    1 September 2020

  • End date

    31 August 2025

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 2 744 119

  • EU contribution

    € 2 744 119

Hosted by:

UNIVERSITE GRENOBLE ALPES

France

Objective

This proposal’s objective is to mature two novel technological developments to push the limits of high-contrast imaging at high-spectral resolution with the near-future extremely large telescope (ELT). I will replicate in the laboratory the observing conditions of the ELT, and the expected spectra of a variety of planets and stars using tunable lasers. First, the high-contrast imaging system of HARMONI will be emulated to produce realistic datacubes onto which post-processing algorithms will be applied to extract as best as possible the planet signal to prepare for the real observations in 2025, which will be key to understand how planets form. I will then develop two complementary technologies. The first one is a novel type of spectrometer specifically designed to characterize an exoplanet at a high spectral resolution with a high throughput, and it will be tested on sky by being coupled to state-of-the-art direct imaging instruments (KPIC & SPHERE) both to validate this concept and to provide the highest resolution spectra of young giant planets ever obtained. A very innovative variation of this spectrometer will turn it into an integral field spectrograph with a FoV perfectly suited for the characterization of planets in the habitable zone of nearby M-dwarves. The second one is an adaptive coronagraph based on an achromatic amplitude control system, which, coupled with an adaptive optics system, will maximize the SNR of the planet by creating contrast only where it is required, in spite of ever-changing amplitude and phase aberrations due to the ELT and its instruments. These technologies will be combined together on the ELT testbench to test its ultimate capability, and lead a consistent proposition for a dedicated ELT instrument design to characterize faint planets in the HZ of nearby stars, and assess the habitability.

Host institution

UNIVERSITE GRENOBLE ALPES

Address

621 Avenue Centrale
38058 Grenoble

France

Activity type

Higher or Secondary Education Establishments

EU Contribution

€ 2 744 119

Beneficiaries (1)

UNIVERSITE GRENOBLE ALPES

France

EU Contribution

€ 2 744 119

Project information

Grant agreement ID: 866001

Status

Grant agreement signed

  • Start date

    1 September 2020

  • End date

    31 August 2025

Funded under:

H2020-EU.1.1.

  • Overall budget:

    € 2 744 119

  • EU contribution

    € 2 744 119

Hosted by:

UNIVERSITE GRENOBLE ALPES

France