Project description
Insight into motile cilia assembly
From fertilization to our last breath, motile cilia, tiny microtubule-based projections from the cell’s surface, are essential to our health. Cilia movement is powered by masses of molecular motors, known as axonemal dyneins, which convert energy into microtubule bending. These mighty machines are precisely assembled from many different components. This EU-funded CiliaCircuits project will investigate how the cell manufactures these motors in time and space. It aims to understand how the cell builds the appropriate number of protein components and assemble them in the right motor type. In the long-term, it is hoped that CiliaCircuits will identify novel molecular switches in this process leading to effective therapeutics for motile ciliopathies.
Objective
Motile cilia are tiny microtubule-based projections which create fluid flow and are essential to human health. Cilia movement is powered by coordinated action of complex macromolecular motors, the axonemal dyneins. During differentiation, as cells produce hundreds of motile cilia, millions of dynein subunits must be pre-assembled in the cytoplasm into very large complexes in the correct stoichiometry which are then trafficked into growing cilia. This poses a sizeable challenge for the cell in terms of allocation of a significant fraction of the global translational machinery for streamlined assembly of dyneins within a crowded cellular space.
The key question remains: How does the cell know how much is enough? This is an extreme example of a common problem in cell biology. Responsive and adaptive mechanisms must exist to prevent futile expenditure of cellular resources in making a surplus of large molecules like dyneins that may also pose a risk of toxic aggregation. While a well-defined transcriptional code for induction of cilia motility genes exists, the translational dynamics and subsequent feedback circuitry coordinating dynein pre-assembly with ciliogenesis remain unexplored.
The molecular logic underlying the construction of motile cilia assembly are still not fully understood. The ambitious nature of CiliaCircuits proposes to use super-resolution and systems approaches to elucidate key mechanisms regulating this process in health and disease.
Human genetics tells us that making cilia motile is a complex process. To date, almost 40 genes have been implicated in primary ciliary dyskinesia (PCD), the disease of motile cilia, for which there is no cure. The long-term vision is to understand this dynamic control operating over a specialized proteome in time and space in order to develop effective PCD therapeutics and identify additional candidate genes involved in this translation regulation.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences biological sciences biochemistry biomolecules proteins proteomics
- natural sciences physical sciences optics microscopy super resolution microscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-COG - Consolidator Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-COG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
EH8 9YL Edinburgh
United Kingdom
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.