Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

iFACT - Iodine Fed Advanced Cusp field Thruster

Project description

Iodine-fed thrusters for satellite propulsion

Amidst a dynamic satellite market environment, the iodine fed advanced cusp field thruster (iFACT) aims to disrupt the status quo in electric propulsion technology. The advanced cusp field thruster (ACFT) was developed by Airbus in 2017. Its features present a significant potential for simplicity, efficiency and low costing in electric propulsion subsystems. The thruster is easy to ignite and optimised to run on iodine, having demonstrated excellent performance results. The prospect for iodine as a novel propellant and for the ACFT as a principal thruster to replace incumbent technology will be further explored, among other focus areas, as part of the EU-funded iFACT project.

Objective

Since several years, the industrialisation of the satellite market has been accelerated. In particular, the market for telecom satellites has changed significantly, because of several new players and numerous plans for satellite constellations, such as OneWeb or Starlink.
In order to increase competitiveness and to disrupt the electric propulsion market, we are proposing the development of the iodine Fed Advanced Cusp field Thruster (iFACT).

iFACT consists of an Advanced Cusp Field Thruster (ACFT), a simple PPU, a thermionic Emitter, a novel propellant feeding architecture, which is optimised for iodine. The ACFT has been invented by Airbus in 2017. Due to its simplicity, paired with efficiency, the fact that it is easy to ignite and its excellent performance data with iodine, it is tailored as key element for an extremely simple, efficient and low cost Electric Propulsion Subsystem (EPS). The baseline thruster (300 W input power) can be used with a simple thermionic cathode. The simple operation of the ACFT enables a reduced (wrt. number of parts and control circuits) but efficient PPU. This components are paired with an unique iodine feeding architecture which is capable to disrupt the electric propulsion market.
Based on this, the proposal will focus on:
- Iodine as disruptive propellant for electric thruster,
- maturation of the Advanced Cusp Field Thruster (ACFT) as disruptive thruster principle, in three different power classes,
- development of an novel, disruptive, extremly simplified low cost Power Processing Unit (PPU),
- use of calcium aluminate (C12A7) as disruptive, low-work function emitter material for cathodes,
- development of an European Iodine compatible long firing test facility.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-SPACE-2018-2020

See all projects funded under this call

Coordinator

AIRBUS DEFENCE AND SPACE GMBH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 909 687,50
Address
WILLY-MESSERSCHMITT-STRASSE 1
82024 Taufkirchen
Germany

See on map

Region
Bayern Oberbayern München, Landkreis
Activity type
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 909 687,50

Participants (7)

My booklet 0 0