Skip to main content
Aller à la page d’accueil de la Commission européenne (s’ouvre dans une nouvelle fenêtre)
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Cancer Long Survivors Artificial Intelligence Follow Up

Description du projet

L’analyse de données pour améliorer la qualité de vie des survivants du cancer

Le nombre de survivants du cancer a augmenté ces dernières années en raison des avancées réalisées dans les diagnostics et les traitements. Garantir la qualité de vie des survivants après leur traitement reste un défi. Le projet CLARIFY, financé par l’UE, identifiera les facteurs de risque qui détériorent l’état d’un patient à la fin de son traitement oncologique. Plus précisément, il rassemblera des données relatives à des survivants du cancer du sein, des poumons ou d’un lymphome (les types les plus courants) dans des hôpitaux espagnols. En utilisant les mégadonnées et des techniques d’intelligence artificielle, il intégrera toutes les données ayant des informations biomédicales pertinentes accessibles au public, ainsi que des informations issues de dispositifs portables utilisés après le traitement. Les données seront analysées afin de prédire le risque propre au patient de présenter des effets secondaires et des toxicités provoqués par son traitement contre le cancer.

Objectif

There were 17 million new cases of cancer diagnosed worldwide in 2018. Survival rates of cancer patients were rather poor until recent decades, when diagnostic techniques have been improved and novel therapeutic options have been developed. It is estimated that more than 50% of adult patients diagnosed with cancer live at least 5 years in the US and Europe. This situation leads to a new challenge: to increase the cancer patients’ post-treatment quality of life and well-being. This proposal aims at identifying cancer survivors from three prevalent types of cancer, including breast, lung and lymphomas. The patient data will be collected from different Spanish hospitals and the selection will be based on ongoing health and supportive care needs of the particular patient types. We will determine the personalised factors that predict poor health status after specific oncological treatments. For this aim, Big Data and Artificial Intelligence techniques will be used to integrate all available patient´s information with publicly available relevant biomedical databases as well as information from wearable devices used after the treatment. To predict patient-specific risk of developing secondary effects and toxicities of their cancer treatments, we will build novel models based on statistical relational learning and explainable AI techniques on top of the integrated knowledge graphs. The models will utilise background knowledge of the associated cancer biology and thus will help clinicians to make evidence-based post-treatment decisions in a way that is not possible at all with any existing approach. In summary, CLARIFY proposes to integrate and analyse large volumes of heterogenous multivariate data to facilitate early discovery of risk factors that may deteriorate a patient condition after the end of oncological treatment. This will effectively help to stratify cancer survivors by risk in order to personalize their follow-up by better assessment of their needs.

Champ scientifique (EuroSciVoc)

CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: Le vocabulaire scientifique européen.

Vous devez vous identifier ou vous inscrire pour utiliser cette fonction

Mots‑clés

Les mots-clés du projet tels qu’indiqués par le coordinateur du projet. À ne pas confondre avec la taxonomie EuroSciVoc (champ scientifique).

Programme(s)

Programmes de financement pluriannuels qui définissent les priorités de l’UE en matière de recherche et d’innovation.

Thème(s)

Les appels à propositions sont divisés en thèmes. Un thème définit un sujet ou un domaine spécifique dans le cadre duquel les candidats peuvent soumettre des propositions. La description d’un thème comprend sa portée spécifique et l’impact attendu du projet financé.

Régime de financement

Régime de financement (ou «type d’action») à l’intérieur d’un programme présentant des caractéristiques communes. Le régime de financement précise le champ d’application de ce qui est financé, le taux de remboursement, les critères d’évaluation spécifiques pour bénéficier du financement et les formes simplifiées de couverture des coûts, telles que les montants forfaitaires.

RIA - Research and Innovation action

Voir tous les projets financés dans le cadre de ce programme de financement

Appel à propositions

Procédure par laquelle les candidats sont invités à soumettre des propositions de projet en vue de bénéficier d’un financement de l’UE.

(s’ouvre dans une nouvelle fenêtre) H2020-SC1-DTH-2018-2020

Voir tous les projets financés au titre de cet appel

Coordinateur

SERVICIO MADRILENO DE SALUD
Contribution nette de l'UE

La contribution financière nette de l’UE est la somme d’argent que le participant reçoit, déduite de la contribution de l’UE versée à son tiers lié. Elle prend en compte la répartition de la contribution financière de l’UE entre les bénéficiaires directs du projet et d’autres types de participants, tels que les participants tiers.

€ 371 250,00
Adresse
Paseo De la Castellana, 280
28046 MADRID
Espagne

Voir sur la carte

Région
Comunidad de Madrid Comunidad de Madrid Madrid
Type d’activité
Public bodies (excluding Research Organisations and Secondary or Higher Education Establishments)
Liens
Coût total

Les coûts totaux encourus par l’organisation concernée pour participer au projet, y compris les coûts directs et indirects. Ce montant est un sous-ensemble du budget global du projet.

€ 1 018 750,00

Participants (12)

Mon livret 0 0