Skip to main content
European Commission logo
English English
CORDIS - EU research results
CORDIS
CORDIS Web 30th anniversary CORDIS Web 30th anniversary

Ecologically and Economically viable Production and Recycling of Lithium-Ion Batteries

CORDIS provides links to public deliverables and publications of HORIZON projects.

Links to deliverables and publications from FP7 projects, as well as links to some specific result types such as dataset and software, are dynamically retrieved from OpenAIRE .

Deliverables

Project identity, website and social media channels

Report on the ECOLIB online and digital communication activities incl Logo website social media etc This deliverable relates to Task 91

Second Report on the chemical environment of silicon-based materials and ageing mechanisms: post mortem and operando analysis

The report will provide results of post-mortem electrode analysis by spectroscopic techniques completed by measurements in operando modes (XPS, NMR) performed to obtain the real-time chemical evolution of the SEI and elemental distribution during cell cycling. The deliverable relates to Task 6.3.

Report on hot-spot-analysis: establishing ecological and economic impact profiles of selected production, reuse and recycling Routes

Report on the identification of key drivers for ecological and economic sustainability by screening the production and processing chain based on the settings in Task 8.1. The deliverable relates to Task 8.2.

Report on operando characterization of cells

The report will provide the validation/optimization of synchrotron cells and data acquisition protocols. Results of the operando structural characterization of electrodes in the course of cell cycling by means of scattering and absorption methods will be provided. The deliverable relates to Tasks 6.2 and 6.3.

Second Report on the multi-scale morphological/structural characterization of silicon-based materials and ageing mechanisms: post mortem and operando analysis

This report will provide further results with respect to the ex-situ (post-mortem) characterization of the morphology/structure of silicon-based materials. In addition, further results regarding the ageing of the battery and its changes in the morphology/structure due to cycling will be given. In this report in addition to the results of the ex-situ characterization, in-operando results will be delivered. All characterization methods in this report will be described and a conclusion regarding the results will be given. This deliverable relates to Task 6.2 and D6.2 and builds on its first results.

Benchmarking results

For the comparison of the ECOLIB cells with worldwide competition the respective test results will be shown and compared It refers to Task 41

First Report on the characterization of electrolytes

The report will describe the development of electrolyte system for the project The report will encompass conductivity electrochemical stability diffusivity rheological properties interfacial stability for Generation I of the electrolytes The deliverable relates to Task 63

1D electrochemical model with non-linear capacity fade

The report will describe the macroscale model development and procedures followed to simulate nonlinear capacity fade. The report will work closely with Task 7.1 to understand the microscale simulations when performing the macro scale model. The impact of the amount of silicon and graphite on the electrodes overall volume change, SEI deposition and subsequent porosity variation are planned to be analysed. This report corresponds to Task 7.3.

Relationship anode material content, in-situ & macroscopic response

The report will describe application of the model (see Task 7.1) to determine the relationship between the anode material composition and in-situ behaviour of the anode near the interfaces. It will seek to identify optimum anode material compositions that allow a safe performance of the battery. The report corresponds to the Task 7.2, and will draw on the experimental information provided in the Task 6.2.

Plan for exploitation and dissemination

Overview of the activities planned for exploitation and dissemination of project results This deliverable relates to Task 97

Final report on chemical-structural integrated analysis of components and cells

The report will give an overview of the results obtained on both the structure and the chemical environment, at the level of electrodes and cell, by combining spectroscopic, microscopy and scattering techniques. The information obtained with the various techniques will be cross-correlated to provide an integrated analysis. The deliverable relates to Task 6.3.

Requirements specification

The specification of the requirements for the LIB cells especially for stationary applications will be described and fixed as a measure for the project success The deliverable refers to Task 42

Generation I of electrolyte (high-liquid)

The 1st generation of electrolyte will be a highliquid gellified electrolyte containing linear polycarbonates The electrolyte composition will be based on stateoftheart from the SINTBAT project The deliverable relates to Task 23

Report on value chain analysis and assessment methods: definitions and settings

This report will provide all general definitions settings and system boundaries which will be used by all subsequent tasks in order to guarantee a coherent sustainability analysis throughout the entire work package It relates to Task 81

Catalogue of good practices

Tabular overview of good practices elaborated and collected during the project implementation. These good practices shall ideally cover all scientific fields addressed in the project. The deliverable relates to Task 9.8.

Test results on module level

If the number of ECO²LIB cells are enough to produce a module, it will be tested. Otherwise, the performance parameters will be predicted using the ECO²LIB cell performance. The deliverable refers to Task 4.4.

Report on holistic LCA and LCC and comparison to the state-of-the-art technology

Report on the evaluation on pilot-scale level by means of the holistic life cycle and cost-benefit analyses as well as comparison to the status quo of LIB production and recycling. This deliverable relates to Task 8.3.

Second report on the characterization of electrolytes

The report will describe the development of electrolyte system for the project. The report will encompass conductivity, electrochemical stability, diffusivity, rheological properties, interfacial stability for Generation II of the electrolytes. The deliverable relates to Task 6.3.

Second delivery of input and validation data on electrochemical testing of components and cells

This deliverable summarises the second set of electrochemical data related to electrochemical properties of Sibased electrodes These include ia specific capacity potential profiles SEI layer resistance CT resistance lithium diffusion coefficient electric conductivity It refers to Task 61

First delivery of input and validation data on electrochemical testing of components and cells

This deliverable summarises the first set of electrochemical data related to electrochemical properties of Sibased electrodes These include ia specific capacity potential profiles SEI layer resistance CT resistance lithium diffusion coefficient electric conductivity It refers to Task 61

Comparative Study on existing LIB recycling technologies

The report will give an overview of industrially available recycling technologies providing a benchmark for the proposed recycling technology of ECOLIB project Furthermore it will also give an overview of recently developed recycling technologies from literature and patent research Finally a comprehensive evaluation of the various processes will be given in view of material efficiency investment capacity general economic and environmental performance etc The deliverable relates to Task 51

30 Gen3 21700 cells available, 800 Wh/L; 70% capacity retention @ 300 Cycles (100%DOD)

In this deliverable, the production of 30 Gen3 21700 cells will be reported and summarized. The produced cells should achieve an energy density of 800Wh/L with 70% capacity retention after 300 cycles (100%DOD). It refers to Task 3.3.

30 Gen1 21700 cells available, 700Wh/L; 70% capacity retention @ 300 Cycles (100%DOD)

In this deliverable, the production of 30 Gen1 21700 cells will be reported and summarized. The produced cells should achieve an energy density of 700Wh/L with 70% capacity retention after 300 cycles (100%DOD). It refers to Task 3.3.

50 Gen1 CoinPower cells with 10 % improved capacity manufactured

In this deliverable the production of 50 Gen1 CoinPower cells will be reported and summarized The produced cells should achieve an improved capacity of 10 compared to state of the art CoinPower cells This deliverable refers to Task 33

30 Gen2 21700 cells available, 800 Wh/L; 70% capacity retention @ 300 Cycles (100%DOD)

In this deliverable, the production of 30 Gen2 21700 cells will be reported and summarized. The produced cells should achieve an energy density of 800Wh/L with 70% capacity retention after 300 cycles (100%DOD). It refers to Task 3.3.

50 Gen2 CoinPower cells with 15 % improved capacity manufactured

In this deliverable, the production of 50 Gen2 CoinPower cells will be reported and summarized. The produced cells should have 15% improved capacity compared to state of the art CoinPower cells. The deliverable refers to Task 3.3.

Publications

A Multiscale, Correlative, Air Free Workflow for the Analysis of Li Distribution in Batteries via ToF-SIMS

Author(s): Stephen T. Kelly, Robin White, Benjamin Tordoff, Sebastian Schadler, Thomas Vorauer, Bernd Fuchsbichler, Stefan Koller and Roland Brunner
Published in: Microscopy & Microanalysis, Issue Volume 28 , Supplement S1, 2022, Page(s) 866-867
Publisher: Cambridge University press
DOI: 10.1017/s1431927622003841

Synchrotron Holotomography on Silicon-Based Anode Materials for Improved Lithium Ion Batteries

Author(s): Fereshteh Falah Chamasemani, Michael Häusler, Thomas Vorauer, Guilhem Paradol, Alice Robba, Victor Vanpeene, Bernd Fuchsbichler, Claire Villevieille, Sandrine Lyonnard and Roland Brunner
Published in: Microscopy & Microanalysis, Issue Volume 28, Supplement S1, 2022, Page(s) 200-202
Publisher: Cambridge University press
DOI: 10.1017/s1431927622001672

Fluorine‐Free Electrolytes for Lithium and Sodium Batteries

Author(s): Guiomar Hernández; Ronnie Mogensen; Reza Younesi; Jonas Mindemark
Published in: Batteries & Supercaps, 2022, ISSN 2566-6223
Publisher: Wiley-VCH
DOI: 10.1002/batt.202100373

Multimethod Approach to Uncover the Capacity Loss in Silicon-Based Lithium-Ion Batteries

Author(s): Michael Häusler, Olga Stamati, Julie Villanova, Bernhard Sartory, Christoph Gammer, Bernd Fuchsbichler, Christoph Stangl, Roland Brunner
Published in: Microscopy and Microanalysis, Issue 30, 2024, ISSN 1431-9276
Publisher: Cambridge University Press
DOI: 10.1093/mam/ozae044.116

The origins of critical deformations in cylindrical silicon based Li-ion batteries

Author(s): Erik Lübke, Lukas Helfen, Phil Cook, Marta Mirolo, Valentin Vinci, Ove Korjus, Bernd Fuchsbichler, Stefan Koller, Roland Brunner, Jakub Drnec, Sandrine Lyonnard
Published in: Energy & Environmental Science, Issue 17, 2024, Page(s) 5048-5059, ISSN 1754-5692
Publisher: Royal Society of Chemistry
DOI: 10.1039/d4ee00590b

Spatially and Chemically Resolved Degradation of Fluorine-Free Electrolyte on Silicon/Graphite Surfaces

Author(s): Yi-Chen Weng, Rassmus Andersson, Ming-Tao Lee, Jonas Mindemark, Andreas Lindblad, Maria Hahlin, Guiomar Hernández
Published in: Journal of The Electrochemical Society, Issue 171, 2024, Page(s) 060527, ISSN 0013-4651
Publisher: Electrochemical Society, Inc.
DOI: 10.1149/1945-7111/ad5621

2D Layered Nanomaterials as Fillers in Polymer Composite Electrolytes for Lithium Batteries

Author(s): Vijayakumar, Vidyanand; Ghosh, Meena; Asokan, Kiran; Sukumaran, Santhosh Babu; Kurungot, Sreekumar; Mindemark, Jonas; Brandell, Daniel; Winter, Martin; Nair, Jijeesh
Published in: Advanced energy materials, Issue 13(15), 2023, ISSN 1614-6840
Publisher: Wiley-VCH
DOI: 10.1002/aenm.202203326

Facile preparation of hierarchical 3D current collector for Li-ion anodes

Author(s): Maciej Ratynski; Bartosz Hamankiewicz; Andrzej Czerwinski
Published in: Electrochimica Acta, Issue 403, 2022, ISSN 0013-4686
Publisher: Pergamon Press Ltd.
DOI: 10.1016/j.electacta.2021.139698

The role of coordination strength in solid polymer electrolytes: compositional dependence of transference numbers in the poly(ε-caprolactone)-poly(trimethylene carbonate) system.

Author(s): Therese Eriksson; Amber Mace; Jonas Mindemark; Daniel Brandell
Published in: Physical Chemistry Chemical Physics, Issue 45, 2021, Page(s) 25550-25557, ISSN 1463-9076
Publisher: Royal Society of Chemistry
DOI: 10.1039/d1cp03929f

Surface Oxidation of Nano-Silicon as a Method for Cycle Life Enhancement of Li-ion Active Materials

Author(s): Maciej Ratynski, Bartosz Hamankiewicz, Dominika A. Buchberger, Andrzej Czerwinski
Published in: Molecules, Issue 25/18, 2020, Page(s) 4093, ISSN 1420-3049
Publisher: Multidisciplinary Digital Publishing Institute (MDPI)
DOI: 10.3390/molecules25184093

Investigations of Silicon-Based Anodes for Li-Ion Batteries Using X-Ray and Neutron 3D/4D Imaging Techniques

Author(s): Erik Lübke; Lukas Helfen; Roland Brunner; Thomas Vorauer; Jakub Drnec; Stefan Koller; Sandrine Lyonnard
Published in: Microscopy and Microanalysis, Issue 28, 2022, ISSN 1435-8115
Publisher: Cambridge University Press
DOI: 10.1017/s1431927622001829

Amorphous shear band formation in crystalline Si-anodes governs lithiation and capacity fading in Li-ion batteries

Author(s): Michael Häusler, Olga Stamati, Christoph Gammer, Franco Moitzi, Rahulkumar Jagdishbhai Sinojiya, Julie Villanova, Bernhard Sartory, Daniel Scheiber, Jozef Keckes, Bernd Fuchsbichler, Stefan Koller, Roland Brunner
Published in: Communications Materials, Issue 5, 2024, ISSN 2662-4443
Publisher: Nature Springer
DOI: 10.1038/s43246-024-00599-w

Carbonyl-Containing Solid Polymer Electrolyte Host Materials: Conduction and Coordination in Polyketone, Polyester, and Polycarbonate Systems

Author(s): Therese Eriksson; Harish Gudla; Yumehiro Manabe; Tomoki Yoneda; Daniel Friesen; Chao Zhang; Yasuhide Inokuma; Daniel Brandell; Jonas Mindemark
Published in: Macromolecules, Issue 55,24, 2022, Page(s) 10940-10949, ISSN 1520-5835
Publisher: American Chemical Society
DOI: 10.1021/acs.macromol.2c01683

Impact of solid-electrolyte interphase reformation on capacity loss in silicon-based lithium-ion batteries

Author(s): Vorauer, T.; Schöggl, J.; Sanadhya, S. G.; Poluektov, M.; Widanage, W. D.; Figiel, L.; Schädler. S.; Tordoff, B.; Fuchsbichler, B.; Koller, S.; Brunner, R.
Published in: communications materials, 2023, ISSN 2662-4443
Publisher: Nature Portfolio
DOI: 10.1038/s43246-023-00368-1

Exploring the use of oligomeric carbonates as porogens and ion-conductors in phase-separated structural electrolytes for Lithium-ion batteries

Author(s): Emilsson, Samuel; Vijayakumar, Vidyanand; Mindemark, Jonas; Johansson, Mats
Published in: Electrochimica Acta, 2023, ISSN 1873-3859
Publisher: Elsevier
DOI: 10.1016/j.electacta.2023.142176

Charge Dynamics Induced by Lithiation Heterogeneity in Silicon‐Graphite Composite Anodes

Author(s): Christopher L. Berhaut; Marta Mirolo; Diana Zapata Dominguez; Isaac Martens; Stéphanie Pouget; Nathalie Herlin‐Boime; Marion Chandesris; Samuel Tardif; Jakub Drnec; Sandrine Lyonnard
Published in: Advanced Energy Materials, Issue 13, 2023, ISSN 1614-6840
Publisher: Wiley-VCH
DOI: 10.1002/aenm.202301874

Decomposition of Carbonate‐Based Electrolytes: Differences and Peculiarities for Liquids vs. Polymers Observed Using Operando Gas Analysis

Author(s): Christofer Sångeland, Bing Sun, Daniel Brandell, Erik J. Berg, Jonas Mindemark
Published in: Batteries & Supercaps, Issue 4, 2023, Page(s) 785-790, ISSN 2566-6223
Publisher: Wiley-VCH
DOI: 10.1002/batt.202000307

Seeing the Unseen: Mg<sup>2+</sup>, Na<sup>+</sup>, and K<sup>+</sup> Transference Numbers in Post-Li Battery Electrolytes by Electrophoretic Nuclear Magnetic Resonance

Author(s): Caroline Mönich, Rassmus Andersson, Guiomar Hernández, Jonas Mindemark, Monika Schönhoff
Published in: Journal of the American Chemical Society, 2024, ISSN 0002-7863
Publisher: American Chemical Society
DOI: 10.1021/jacs.3c12272

Role of Filler Content and Morphology in LLZO/PEO Membranes

Author(s): Mir Mehraj Ud Din; Mir Mehraj Ud Din; Mir Mehraj Ud Din; M. Häusler; S. M. Fischer; S. M. Fischer; K. Ratzenböck; K. Ratzenböck; F. F. Chamasemani; I. Hanghofer; V. Henninge; R. Brunner; C. Slugovc; C. Slugovc; D. Rettenwander; D. Rettenwander; D. Rettenwander
Published in: Frontiers in Energy Research, Vol 9 (2021), Issue 7, 2021, ISSN 2296-598X
Publisher: Frontiers Media S.A.
DOI: 10.3389/fenrg.2021.711610

A cut finite-element method for fracture and contact problems in large-deformation solid mechanics

Author(s): Michael Poluektov, Lukasz Figiel
Published in: Computer Methods in Applied Mechanics and Engineering, Issue 388, 2021, ISSN 0045-7825
Publisher: Elsevier BV
DOI: 10.1016/j.cma.2021.114234

Multi-scale quantification and modeling of aged nanostructured silicon-based composite anodes

Author(s): Thomas Vorauer, Praveen Kumar, Christopher L. Berhaut, Fereshteh F. Chamasemani, Pierre-Henri Jouneau, David Aradilla, Samuel Tardif, Stephanie Pouget, Bernd Fuchsbichler, Lukas Helfen, Selcuk Atalay, Widanalage D. Widanage, Stefan Koller, Sandrine Lyonnard, Roland Brunner
Published in: Communications Chemistry, Issue 3/1, 2020, ISSN 2399-3669
Publisher: Springer Nature
DOI: 10.1038/s42004-020-00386-x

Polyester‐Polycarbonate Polymer Electrolytes Beyond LiFePO<sub>4</sub>: Influence of Lithium Salt and Applied Potential Range

Author(s): Isabell L Johansson, Rassmus Andersson, Johan Erkers, Daniel Brandell, Jonas Mindemark
Published in: ChemElectroChem, Issue 11, 2024, ISSN 2196-0216
Publisher: Wiley-VCH
DOI: 10.1002/celc.202400354

Searching for OpenAIRE data...

There was an error trying to search data from OpenAIRE

No results available