CORDIS fournit des liens vers les livrables publics et les publications des projets HORIZON.
Les liens vers les livrables et les publications des projets du 7e PC, ainsi que les liens vers certains types de résultats spécifiques tels que les jeux de données et les logiciels, sont récupérés dynamiquement sur OpenAIRE .
Livrables
Report on the ECOLIB online and digital communication activities incl Logo website social media etc This deliverable relates to Task 91
The report will provide results of post-mortem electrode analysis by spectroscopic techniques completed by measurements in operando modes (XPS, NMR) performed to obtain the real-time chemical evolution of the SEI and elemental distribution during cell cycling. The deliverable relates to Task 6.3.
Report on hot-spot-analysis: establishing ecological and economic impact profiles of selected production, reuse and recycling Routes (s’ouvre dans une nouvelle fenêtre)Report on the identification of key drivers for ecological and economic sustainability by screening the production and processing chain based on the settings in Task 8.1. The deliverable relates to Task 8.2.
Report on operando characterization of cells (s’ouvre dans une nouvelle fenêtre)The report will provide the validation/optimization of synchrotron cells and data acquisition protocols. Results of the operando structural characterization of electrodes in the course of cell cycling by means of scattering and absorption methods will be provided. The deliverable relates to Tasks 6.2 and 6.3.
Second Report on the multi-scale morphological/structural characterization of silicon-based materials and ageing mechanisms: post mortem and operando analysis (s’ouvre dans une nouvelle fenêtre)This report will provide further results with respect to the ex-situ (post-mortem) characterization of the morphology/structure of silicon-based materials. In addition, further results regarding the ageing of the battery and its changes in the morphology/structure due to cycling will be given. In this report in addition to the results of the ex-situ characterization, in-operando results will be delivered. All characterization methods in this report will be described and a conclusion regarding the results will be given. This deliverable relates to Task 6.2 and D6.2 and builds on its first results.
Benchmarking results (s’ouvre dans une nouvelle fenêtre)For the comparison of the ECOLIB cells with worldwide competition the respective test results will be shown and compared It refers to Task 41
First Report on the characterization of electrolytes (s’ouvre dans une nouvelle fenêtre)The report will describe the development of electrolyte system for the project The report will encompass conductivity electrochemical stability diffusivity rheological properties interfacial stability for Generation I of the electrolytes The deliverable relates to Task 63
1D electrochemical model with non-linear capacity fade (s’ouvre dans une nouvelle fenêtre)The report will describe the macroscale model development and procedures followed to simulate nonlinear capacity fade. The report will work closely with Task 7.1 to understand the microscale simulations when performing the macro scale model. The impact of the amount of silicon and graphite on the electrodes overall volume change, SEI deposition and subsequent porosity variation are planned to be analysed. This report corresponds to Task 7.3.
Relationship anode material content, in-situ & macroscopic response (s’ouvre dans une nouvelle fenêtre)The report will describe application of the model (see Task 7.1) to determine the relationship between the anode material composition and in-situ behaviour of the anode near the interfaces. It will seek to identify optimum anode material compositions that allow a safe performance of the battery. The report corresponds to the Task 7.2, and will draw on the experimental information provided in the Task 6.2.
Plan for exploitation and dissemination (s’ouvre dans une nouvelle fenêtre)Overview of the activities planned for exploitation and dissemination of project results This deliverable relates to Task 97
Final report on chemical-structural integrated analysis of components and cells (s’ouvre dans une nouvelle fenêtre)The report will give an overview of the results obtained on both the structure and the chemical environment, at the level of electrodes and cell, by combining spectroscopic, microscopy and scattering techniques. The information obtained with the various techniques will be cross-correlated to provide an integrated analysis. The deliverable relates to Task 6.3.
Requirements specification (s’ouvre dans une nouvelle fenêtre)The specification of the requirements for the LIB cells especially for stationary applications will be described and fixed as a measure for the project success The deliverable refers to Task 42
Generation I of electrolyte (high-liquid) (s’ouvre dans une nouvelle fenêtre)The 1st generation of electrolyte will be a highliquid gellified electrolyte containing linear polycarbonates The electrolyte composition will be based on stateoftheart from the SINTBAT project The deliverable relates to Task 23
Report on value chain analysis and assessment methods: definitions and settings (s’ouvre dans une nouvelle fenêtre)This report will provide all general definitions settings and system boundaries which will be used by all subsequent tasks in order to guarantee a coherent sustainability analysis throughout the entire work package It relates to Task 81
Catalogue of good practices (s’ouvre dans une nouvelle fenêtre)Tabular overview of good practices elaborated and collected during the project implementation. These good practices shall ideally cover all scientific fields addressed in the project. The deliverable relates to Task 9.8.
Test results on module level (s’ouvre dans une nouvelle fenêtre)If the number of ECO²LIB cells are enough to produce a module, it will be tested. Otherwise, the performance parameters will be predicted using the ECO²LIB cell performance. The deliverable refers to Task 4.4.
Report on holistic LCA and LCC and comparison to the state-of-the-art technology (s’ouvre dans une nouvelle fenêtre)Report on the evaluation on pilot-scale level by means of the holistic life cycle and cost-benefit analyses as well as comparison to the status quo of LIB production and recycling. This deliverable relates to Task 8.3.
Second report on the characterization of electrolytes (s’ouvre dans une nouvelle fenêtre)The report will describe the development of electrolyte system for the project. The report will encompass conductivity, electrochemical stability, diffusivity, rheological properties, interfacial stability for Generation II of the electrolytes. The deliverable relates to Task 6.3.
Second delivery of input and validation data on electrochemical testing of components and cells (s’ouvre dans une nouvelle fenêtre)This deliverable summarises the second set of electrochemical data related to electrochemical properties of Sibased electrodes These include ia specific capacity potential profiles SEI layer resistance CT resistance lithium diffusion coefficient electric conductivity It refers to Task 61
First delivery of input and validation data on electrochemical testing of components and cells (s’ouvre dans une nouvelle fenêtre)This deliverable summarises the first set of electrochemical data related to electrochemical properties of Sibased electrodes These include ia specific capacity potential profiles SEI layer resistance CT resistance lithium diffusion coefficient electric conductivity It refers to Task 61
Comparative Study on existing LIB recycling technologies (s’ouvre dans une nouvelle fenêtre)The report will give an overview of industrially available recycling technologies providing a benchmark for the proposed recycling technology of ECOLIB project Furthermore it will also give an overview of recently developed recycling technologies from literature and patent research Finally a comprehensive evaluation of the various processes will be given in view of material efficiency investment capacity general economic and environmental performance etc The deliverable relates to Task 51
In this deliverable, the production of 30 Gen3 21700 cells will be reported and summarized. The produced cells should achieve an energy density of 800Wh/L with 70% capacity retention after 300 cycles (100%DOD). It refers to Task 3.3.
30 Gen1 21700 cells available, 700Wh/L; 70% capacity retention @ 300 Cycles (100%DOD) (s’ouvre dans une nouvelle fenêtre)In this deliverable, the production of 30 Gen1 21700 cells will be reported and summarized. The produced cells should achieve an energy density of 700Wh/L with 70% capacity retention after 300 cycles (100%DOD). It refers to Task 3.3.
50 Gen1 CoinPower cells with 10 % improved capacity manufactured (s’ouvre dans une nouvelle fenêtre)In this deliverable the production of 50 Gen1 CoinPower cells will be reported and summarized The produced cells should achieve an improved capacity of 10 compared to state of the art CoinPower cells This deliverable refers to Task 33
30 Gen2 21700 cells available, 800 Wh/L; 70% capacity retention @ 300 Cycles (100%DOD) (s’ouvre dans une nouvelle fenêtre)In this deliverable, the production of 30 Gen2 21700 cells will be reported and summarized. The produced cells should achieve an energy density of 800Wh/L with 70% capacity retention after 300 cycles (100%DOD). It refers to Task 3.3.
50 Gen2 CoinPower cells with 15 % improved capacity manufactured (s’ouvre dans une nouvelle fenêtre)In this deliverable, the production of 50 Gen2 CoinPower cells will be reported and summarized. The produced cells should have 15% improved capacity compared to state of the art CoinPower cells. The deliverable refers to Task 3.3.
Publications
Auteurs:
Stephen T. Kelly, Robin White, Benjamin Tordoff, Sebastian Schadler, Thomas Vorauer, Bernd Fuchsbichler, Stefan Koller and Roland Brunner
Publié dans:
Microscopy & Microanalysis, Numéro Volume 28 , Supplement S1, 2022, Page(s) 866-867
Éditeur:
Cambridge University press
DOI:
10.1017/s1431927622003841
Auteurs:
Fereshteh Falah Chamasemani, Michael Häusler, Thomas Vorauer, Guilhem Paradol, Alice Robba, Victor Vanpeene, Bernd Fuchsbichler, Claire Villevieille, Sandrine Lyonnard and Roland Brunner
Publié dans:
Microscopy & Microanalysis, Numéro Volume 28, Supplement S1, 2022, Page(s) 200-202
Éditeur:
Cambridge University press
DOI:
10.1017/s1431927622001672
Auteurs:
Guiomar Hernández; Ronnie Mogensen; Reza Younesi; Jonas Mindemark
Publié dans:
Batteries & Supercaps, 2022, ISSN 2566-6223
Éditeur:
Wiley-VCH
DOI:
10.1002/batt.202100373
Auteurs:
Michael Häusler, Olga Stamati, Julie Villanova, Bernhard Sartory, Christoph Gammer, Bernd Fuchsbichler, Christoph Stangl, Roland Brunner
Publié dans:
Microscopy and Microanalysis, Numéro 30, 2024, ISSN 1431-9276
Éditeur:
Cambridge University Press
DOI:
10.1093/mam/ozae044.116
Auteurs:
Erik Lübke, Lukas Helfen, Phil Cook, Marta Mirolo, Valentin Vinci, Ove Korjus, Bernd Fuchsbichler, Stefan Koller, Roland Brunner, Jakub Drnec, Sandrine Lyonnard
Publié dans:
Energy & Environmental Science, Numéro 17, 2024, Page(s) 5048-5059, ISSN 1754-5692
Éditeur:
Royal Society of Chemistry
DOI:
10.1039/d4ee00590b
Auteurs:
Yi-Chen Weng, Rassmus Andersson, Ming-Tao Lee, Jonas Mindemark, Andreas Lindblad, Maria Hahlin, Guiomar Hernández
Publié dans:
Journal of The Electrochemical Society, Numéro 171, 2024, Page(s) 060527, ISSN 0013-4651
Éditeur:
Electrochemical Society, Inc.
DOI:
10.1149/1945-7111/ad5621
Auteurs:
Vijayakumar, Vidyanand; Ghosh, Meena; Asokan, Kiran; Sukumaran, Santhosh Babu; Kurungot, Sreekumar; Mindemark, Jonas; Brandell, Daniel; Winter, Martin; Nair, Jijeesh
Publié dans:
Advanced energy materials, Numéro 13(15), 2023, ISSN 1614-6840
Éditeur:
Wiley-VCH
DOI:
10.1002/aenm.202203326
Auteurs:
Maciej Ratynski; Bartosz Hamankiewicz; Andrzej Czerwinski
Publié dans:
Electrochimica Acta, Numéro 403, 2022, ISSN 0013-4686
Éditeur:
Pergamon Press Ltd.
DOI:
10.1016/j.electacta.2021.139698
Auteurs:
Therese Eriksson; Amber Mace; Jonas Mindemark; Daniel Brandell
Publié dans:
Physical Chemistry Chemical Physics, Numéro 45, 2021, Page(s) 25550-25557, ISSN 1463-9076
Éditeur:
Royal Society of Chemistry
DOI:
10.1039/d1cp03929f
Auteurs:
Maciej Ratynski, Bartosz Hamankiewicz, Dominika A. Buchberger, Andrzej Czerwinski
Publié dans:
Molecules, Numéro 25/18, 2020, Page(s) 4093, ISSN 1420-3049
Éditeur:
Multidisciplinary Digital Publishing Institute (MDPI)
DOI:
10.3390/molecules25184093
Auteurs:
Erik Lübke; Lukas Helfen; Roland Brunner; Thomas Vorauer; Jakub Drnec; Stefan Koller; Sandrine Lyonnard
Publié dans:
Microscopy and Microanalysis, Numéro 28, 2022, ISSN 1435-8115
Éditeur:
Cambridge University Press
DOI:
10.1017/s1431927622001829
Auteurs:
Michael Häusler, Olga Stamati, Christoph Gammer, Franco Moitzi, Rahulkumar Jagdishbhai Sinojiya, Julie Villanova, Bernhard Sartory, Daniel Scheiber, Jozef Keckes, Bernd Fuchsbichler, Stefan Koller, Roland Brunner
Publié dans:
Communications Materials, Numéro 5, 2024, ISSN 2662-4443
Éditeur:
Nature Springer
DOI:
10.1038/s43246-024-00599-w
Auteurs:
Therese Eriksson; Harish Gudla; Yumehiro Manabe; Tomoki Yoneda; Daniel Friesen; Chao Zhang; Yasuhide Inokuma; Daniel Brandell; Jonas Mindemark
Publié dans:
Macromolecules, Numéro 55,24, 2022, Page(s) 10940-10949, ISSN 1520-5835
Éditeur:
American Chemical Society
DOI:
10.1021/acs.macromol.2c01683
Auteurs:
Vorauer, T.; Schöggl, J.; Sanadhya, S. G.; Poluektov, M.; Widanage, W. D.; Figiel, L.; Schädler. S.; Tordoff, B.; Fuchsbichler, B.; Koller, S.; Brunner, R.
Publié dans:
communications materials, 2023, ISSN 2662-4443
Éditeur:
Nature Portfolio
DOI:
10.1038/s43246-023-00368-1
Auteurs:
Emilsson, Samuel; Vijayakumar, Vidyanand; Mindemark, Jonas; Johansson, Mats
Publié dans:
Electrochimica Acta, 2023, ISSN 1873-3859
Éditeur:
Elsevier
DOI:
10.1016/j.electacta.2023.142176
Auteurs:
Christopher L. Berhaut; Marta Mirolo; Diana Zapata Dominguez; Isaac Martens; Stéphanie Pouget; Nathalie Herlin‐Boime; Marion Chandesris; Samuel Tardif; Jakub Drnec; Sandrine Lyonnard
Publié dans:
Advanced Energy Materials, Numéro 13, 2023, ISSN 1614-6840
Éditeur:
Wiley-VCH
DOI:
10.1002/aenm.202301874
Auteurs:
Christofer Sångeland, Bing Sun, Daniel Brandell, Erik J. Berg, Jonas Mindemark
Publié dans:
Batteries & Supercaps, Numéro 4, 2023, Page(s) 785-790, ISSN 2566-6223
Éditeur:
Wiley-VCH
DOI:
10.1002/batt.202000307
Auteurs:
Caroline Mönich, Rassmus Andersson, Guiomar Hernández, Jonas Mindemark, Monika Schönhoff
Publié dans:
Journal of the American Chemical Society, 2024, ISSN 0002-7863
Éditeur:
American Chemical Society
DOI:
10.1021/jacs.3c12272
Auteurs:
Mir Mehraj Ud Din; Mir Mehraj Ud Din; Mir Mehraj Ud Din; M. Häusler; S. M. Fischer; S. M. Fischer; K. Ratzenböck; K. Ratzenböck; F. F. Chamasemani; I. Hanghofer; V. Henninge; R. Brunner; C. Slugovc; C. Slugovc; D. Rettenwander; D. Rettenwander; D. Rettenwander
Publié dans:
Frontiers in Energy Research, Vol 9 (2021), Numéro 7, 2021, ISSN 2296-598X
Éditeur:
Frontiers Media S.A.
DOI:
10.3389/fenrg.2021.711610
Auteurs:
Michael Poluektov, Lukasz Figiel
Publié dans:
Computer Methods in Applied Mechanics and Engineering, Numéro 388, 2021, ISSN 0045-7825
Éditeur:
Elsevier BV
DOI:
10.1016/j.cma.2021.114234
Auteurs:
Thomas Vorauer, Praveen Kumar, Christopher L. Berhaut, Fereshteh F. Chamasemani, Pierre-Henri Jouneau, David Aradilla, Samuel Tardif, Stephanie Pouget, Bernd Fuchsbichler, Lukas Helfen, Selcuk Atalay, Widanalage D. Widanage, Stefan Koller, Sandrine Lyonnard, Roland Brunner
Publié dans:
Communications Chemistry, Numéro 3/1, 2020, ISSN 2399-3669
Éditeur:
Springer Nature
DOI:
10.1038/s42004-020-00386-x
Auteurs:
Isabell L Johansson, Rassmus Andersson, Johan Erkers, Daniel Brandell, Jonas Mindemark
Publié dans:
ChemElectroChem, Numéro 11, 2024, ISSN 2196-0216
Éditeur:
Wiley-VCH
DOI:
10.1002/celc.202400354
Recherche de données OpenAIRE...
Une erreur s’est produite lors de la recherche de données OpenAIRE
Aucun résultat disponible