Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multiple Designer Organelles for Expanded Eukaryotic life

Project description

Expanding eukaryotic life with novel organelles

Protein design and engineering have the potential to create new proteins and bioinspired materials for various biotechnological applications. To advance these synthetic biological processes, scientists of the EU-funded MultiOrganelleDesign project propose to develop novel organelles capable of driving transcription and translation using an expanded genetic code. The scientists have created membraneless organelles inside eukaryotic cells in which the genetic code can be expanded to open a new path to residue-specific protein engineering. Eukaryotes will then be able to code for more than the normal complement of amino acids.

Objective

The emergence of organelles dedicated to specific cellular functions drove the evolution of more complex eukaryotic organisms. We recently created membraneless organelles inside eukaryotic cells dedicated to orthogonal translation, which opened a new path to residue-specific protein engineering using genetic code expansion. We now want to design novel organelles into eukaryotes that will internally enact the entire central dogma of molecular biology. This will supplement the complex eukaryotic cell with an additional simple and easily tailored orthogonal machinery that can also facilitate transcription and replication. This will enable us to create eukaryotes that have more than four additional expanded genetic codes, and we will explore the functional space occupied by these novel living systems. The organelles will be enhanced to process specific signals to e.g. modify RNA or degrade specific proteins. Besides these curiosity-driven goals, specific applications will allow us to road test our technology. We will directly use these approaches to advance protein engineering in eukaryotes to create proteins and artificial peptide polymers having multiple, noncanonical functionalities suitable for diverse biotechnological applications and new bioinspired materials. We will also develop organelle design into a truly universal and powerful labeling method fully compatible with eukaryotic host cell physiology that has single-residue precision and goes way beyond the state-of-the-art of any fluorescent labeling technology. The approaches will be general and truly flexible in how translation can be tailored in terms of protein, RNA and codon choice, including sense codons and type of new functionalities. Progress made in recent decades has shown that protein design and engineering can revolutionize biology. We can only imagine what can be achieved with designed functional organelles inside eukaryotic cells and how they might enable the creation of new living systems.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-ADG

See all projects funded under this call

Host institution

JOHANNES GUTENBERG-UNIVERSITAT MAINZ
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 499 068,00
Address
SAARSTRASSE 21
55122 MAINZ
Germany

See on map

Region
Rheinland-Pfalz Rheinhessen-Pfalz Mainz, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 499 068,00

Beneficiaries (1)

My booklet 0 0