Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Attosecond physics, free electron quantum optics, photon generation and radiation biology with the accelerator on a photonic chip

Project description

The incredible shrinking particle accelerator finds a home on an integrated photonics chip

Particle accelerators that propel fundamental particles to very high speeds have opened a new window to the building blocks of the universe. Currently, almost all ground-breaking revelations have come from the very few and very large particle accelerators around the world. Shrinking these devices to hand-held portable systems will not only make them accessible to thousands of labs, thus accelerating research, but also pave the way for important applications in fields ranging from healthcare and security to environmental protection. The EU-funded AccelOnChip project is on its way to delivering a miniature particle accelerator on an integrated photonics chip. This work will revolutionise accelerator-based research and applications, placing Europe at the forefront of an emerging scientific and technological field of high socio-economic relevance.

Objective

Resting on our demonstration of laser-driven nanophotonics-based particle acceleration, we propose to build a miniature particle accelerator on a photonic chip, comprising high gradient acceleration and fully optical field-based electron control. The resulting electron beam has outstanding space-time properties: It is bunched on sub-femtosecond timescales, is nanometres wide and coherent. We aim at utilizing this new form of all-optical free electron control in a broad research program with five exciting objectives:
(1) Build a 5 MeV accelerator on a photonic chip in a shoebox-sized vessel,
(2) Perform ultrafast diffraction with attosecond and even zeptosecond electron pulses,
(3) Generate photons on chip at various wavelengths (IR to x-ray),
(4) Couple quantum-coherently electron wavepackets and light in multiple interaction zones, and
(5) Conduct radiobiological experiments, akin to the new FLASH radiotherapy and Microbeam cell treat-ment.

AccelOnChip will enable five science objectives potentially shifting the horizons of todays knowledge and capabilities around ultrafast electron imaging, photon generation, (quantum) electron-light coupling, and radiotherapy dramatically. Moreover, AccelOnChip promises to democratize accelerators: the accelerator on a chip will be based on inexpensive nanofabrication technology. We foresee that every university lab can have access to particle and light sources, today only accessible at large facilities. Last, AccelOnChip will take decisive steps towards an ultracompact electron beam radiation device to be put into the tip of a catheter, a potentially disruptive radiation therapy device facilitating new treatment forms. AccelOnChip is a cross-disciplinary high risk/high return project combining and benefiting nanophotonics, accelerator science, ultra-fast physics, materials science, coherent light-matter coupling, light generation, and radiology - and is based on my groups unique expertise acquired in recent years.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-ADG

See all projects funded under this call

Host institution

FRIEDRICH-ALEXANDER-UNIVERSITAET ERLANGEN-NUERNBERG
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 498 507,50
Address
FREYESLEBENSTRAßE 1
91058 ERLANGEN
Germany

See on map

Region
Bayern Mittelfranken Erlangen, Kreisfreie Stadt
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 498 507,50

Beneficiaries (1)

My booklet 0 0