Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Accessing Nucleosomal DNA

Project description

Come out, come out, wherever you are

DNA is the hereditary code in humans and most other organisms. In human cells, about two metres of DNA are packaged into the nucleus by wrapping it around small clusters of proteins called histones to form chromatin, a complex that looks like beads on a string under the microscope. The individual 'beads' are called nucleosomes and the tight packaging makes it challenging to access the binding sites on the DNA of proteins that control the expression of genes (transcription factors or TF). Building on work enabling high-throughput investigation of nucleosomes to identify TF binding sites, the EU-funded NucEM project is studying the structural and functional aspects of TF binding on nucleosomal DNA. Outcomes will support enhanced understanding and control of gene expression, and will open new routes to effective therapies.

Objective

Transcription factors (TFs) regulate gene expression and govern cell identity. In chromatinised genomes TF binding sites are frequently encapsulated in nucleosomes, which severely restrict access. While specialised pioneer factors have been proposed to bind to these sterically hindered sites, the exact mechanism by which these factors access nucleosomes remains unknown. A number of biochemical models have been put forward that would allow DNA sequence read-out, these include: (i) TFs compatible with the nucleosome architecture, (ii) alternative, partial, DNA motifs that render TFs nucleosome compatible, (iii) exposure of DNA binding sites through histone-nucleosome breathing dynamics, or (iv) remodelling of the histone core by TF binding. Despite being a fundamental question in genome regulation, no structural rationale is currently available for any of these proposed mechanisms. In unpublished work, we developed a novel biochemical assay allowing to simultaneously investigate all DNA registers on a nucleosome for TF access. This tool enabled us to solve the 3.8 Å structure OCT4/SOX2 bound to a nucleosome revealing the unexpected binding modes these TFs employ to engage nucleosomal binding sites (unpublished). Building on this novel biochemical workflow, we propose to solve additional structures of TFs compatible with the nucleosome-architecture and of those TFs suspected to bind to the ends of nucleosomal DNA. By dissecting multiple structures with diverse DNA binding domains in vitro and in cells, we wish to understand general principles of how DNA sequence motifs are being read-out at different sites on a nucleosome. The key questions we wish to address are: How does the location of a TF motif on a nucleosome impact affinity and/or the binding mechanism? Can TF binding remodel the nucleosome architecture? How do arrays of nucleosomes impact TF accessibility to DNA?  

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-ADG

See all projects funded under this call

Host institution

ECOLE POLYTECHNIQUE FEDERALE DE LAUSANNE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 31 250,00
Address
BATIMENT CE 3316 STATION 1
1015 LAUSANNE
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Région lémanique Vaud
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 31 250,00

Beneficiaries (2)

My booklet 0 0