Descripción del proyecto
Análisis de datos de roturas de uniones a través de redes neuronales
El proyecto MEANN, financiado con fondos europeos, adaptará por primera vez una red neuronal recurrente para abordar cuestiones de la correlación multivariable compleja relativas a experimentos de roturas de uniones monomoleculares. El proyecto probará si una red neuronal recurrente puede identificar si existe alguna relación entre unos cambios extremadamente pequeños en la geometría de la unión y las variables de medida en conjuntos de datos de roturas de uniones monomoleculares con mayor precisión que los humanos. Unos métodos mejorados de análisis de datos deberían permitir a los investigadores abordar los retos actuales de la investigación de roturas de uniones monomoleculares, en especial consiguiendo que los experimentos sean más reproducibles y acortando la brecha entre las investigaciones teóricas y experimentales en el campo.
Objetivo
Molecular Electronics Artificial Neural Networks (MEANN) will adapt for the first time a recurrent neural network (RNN) to address complex multivariate correlation questions that arise in single molecular break junction (SMBJ) experiments. The hypothesis is that a RNN will be better than a human at identifying relationships between nanoscopic geometry changes of the junctions and the measured variables in SMBJ data sets, with little or no human bias. These improvements in the data analysis approach will allow researchers to address many of the present problems in SMBJ research, most notably reproducibility and bridging the theory-experiment gap. The proposal has three objectives to implement this goal. I will: (1) generate simulated SMBJ data and use this simulated data to train a RNN to sort SMBJ data into classes with unique and significant features in the data; (2) measure large sets of experimental data while on secondment and apply the trained RNN to the experimental data to sort the experimental data into the classes the RNN has already identified in the simulated data; and (3) derive a deeper understanding of the relationships between the physical processes involved in the break junction, and the observable variables of the experiment. MEANN maximizes my development as a researcher by exposing me to three important opportunities: (1) a world class theoretical chemistry group where I will learn computational and management skills necessary for my future as a researcher, (2) new experimental physics techniques while on secondment, and (3) planning an Applied RNN Summit where I will network with industry leaders in RNN development, share my expertise with peers, and prepare teaching materials to introduce my research to students. As a result of MEANN, researchers will have new tools to generate simulated SMBJ data, analyse their experimental data quickly and objectively, and answer important questions in condensed matter physics and physical chemistry.
Ámbito científico (EuroSciVoc)
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
CORDIS clasifica los proyectos con EuroSciVoc, una taxonomía plurilingüe de ámbitos científicos, mediante un proceso semiautomático basado en técnicas de procesamiento del lenguaje natural.
- ciencias naturalesciencias físicasfísica de la materia condensada
- ciencias naturalesinformática y ciencias de la informaciónciencia de datos
- ciencias naturalesmatemáticasmatemáticas purasgeometría
- ciencias naturalesciencias químicasquímica física
- ciencias naturalesinformática y ciencias de la informacióninteligencia artificialinteligencia computacional
Para utilizar esta función, debe iniciar sesión o registrarse
Programa(s)
Régimen de financiación
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinador
1165 Kobenhavn
Dinamarca