Project description
Pioneering multiscale models of metals will forge a new path forward for applications
Over the last 50 years, polymers and composites have gradually been replacing metals in a variety of applications, in large part due to their light weight relative to their strength. However, they can also display failures rarely seen in metals. The design of lighter and stronger metals that take advantage of polymers' unique combination of strength and deformability (plasticity) requires detailed characterisation of structural dynamics. Engineers must be able to understand and predict metal behaviour as it relates to all scales of structure, from the defects (dislocations) responsible for plasticity within the small crystal grains that compose the solid metal, up to the final component. The EU-funded PMP project is exploiting its pioneering hard X-ray microscope for high-resolution 3D studies that will lead, for the first time, to complex multiscale physics models of metal plasticity under stresses. The models will fill an important gap and open the door to new applications.
Objective
The societal need to conserve materials and energy calls for lighter and stronger metal components. The advantage of metals is their unique combination of plasticity (i.e. formability) and strength, which is governed by their complex structure. This structure is organized hierarchically on several length scales. In contrast to functional materials and polymers, this complexity has led to the common theoretical framework being not physics, but an engineering science: metallurgy. As a result, phenomenological models prevail.
The big obstacle to understand the underlying physics is the lack of visualization of the dynamics of the structure. From 2012 to 2019 I have developed a hard x-ray microscope for high-resolution 3D studies. Uniquely, this now allows us to zoom into the material and map grains and dislocations. This will enable 3D movies on all relevant length scales. No competing group will have anything similar within the next 5 years.
PMP will exploit this to unravel the physics of plasticity. For the first time, we can directly see the processes involved: the creation of dislocations, their self-organization, and subsequent creation of ever more complex patterns. At the same time, we can deduce the local stress. This will provide answers to longstanding core questions of metal science.
Current multiscale models of plasticity are not capable of predicting realistic patterns. The new data will guide theory and allow for direct comparison of models and experiment at all scales. PMP will develop a physics-based multiscale model of plasticity that for the first time can predict which patterns evolve when and where in the metal, and as a result greatly improve predictions of the macroscopic plasticity and strength.
If successful, we have created the instrumental and modelling foundation for a new paradigm in structural materials. This will support the ultimate vision of materials and process design in computer models rather than trial and error in the lab.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- agricultural sciences agriculture, forestry, and fisheries agriculture grains and oilseeds
- natural sciences chemical sciences polymer sciences
- natural sciences physical sciences optics microscopy
- engineering and technology materials engineering metallurgy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-ADG - Advanced Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2019-ADG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
2800 KONGENS LYNGBY
Denmark
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.