Project description DEENESFRITPL Defining tumour state identities and functions at single-cell resolution in real time in vivo Not all cancer cells in a tumour are alike. Some cancer cells proliferate, others differentiate, migrate and metastasise. Yet others enter a dormant state and resist chemotherapy. Scientists therefore need to identify distinct tumour states (TSs) and the mechanisms regulating their identities and functions. The EU-funded TrackingTumorStates project aims to comprehensively define the identities and functions of distinct TSs at single-cell resolution in squamous cell carcinoma. It will develop new genetically engineered tumour models to visualise the dynamics of TSs in real time in vivo. It will also evaluate the roles of the identified TSs by lineage ablation and determine their regulating mechanisms. This work will help to identify new tumour vulnerabilities and pave the way for new therapies. Show the project objective Hide the project objective Objective It is now widely recognized that within a tumor, not all cancer cells are alike and different tumor states (TS) exist. This process is known as tumor heterogeneity. Some cancer cells actively proliferate, while others differentiate, migrate and give rise to metastasis, or enter in a dormant state and resist to chemotherapy. The identification of distinct TS and the mechanisms that regulate their identities and functions is critical for our understanding of tumor heterogeneity. The different TS can acquire distinct phenotypes responsible for tumor progression, metastasis, and therapy resistance. In this project, using multidisciplinary approaches that combine single-cell lineage tracing, single-cell genomics, epigenomics and transcriptomics together with pharmacological treatment and genetic perturbations, we will define in a comprehensive and integrated manner the identities and functions of distinct TS at single-cell resolution in squamous cell carcinoma (SCC). Then, we will develop new genetically engineered tumor models expressing different fluorescent proteins to visualize the dynamics of TS in real time in vivo using intravital microscopy. Moreover, we will assess the roles of the identified TS by lineage ablation and identify the intrinsic and extrinsic mechanisms that regulate their transitions and functions, which will help to define new tumor vulnerabilities and provide new therapeutic opportunities. Fields of science medical and health sciencesclinical medicineoncologyskin cancersquamous cell carcinomanatural sciencesbiological sciencesbiochemistrybiomoleculesproteinsnatural sciencesphysical sciencesopticsmicroscopynatural sciencesbiological sciencesgeneticsepigenetics Programme(s) H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC) Main Programme Topic(s) ERC-2019-ADG - ERC Advanced Grant Call for proposal ERC-2019-ADG See other projects for this call Funding Scheme ERC-ADG - Advanced Grant Coordinator UNIVERSITE LIBRE DE BRUXELLES Net EU contribution € 2 500 000,00 Address Avenue franklin roosevelt 50 1050 Bruxelles Belgium See on map Region Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00 Beneficiaries (1) Sort alphabetically Sort by Net EU contribution Expand all Collapse all UNIVERSITE LIBRE DE BRUXELLES Belgium Net EU contribution € 2 500 000,00 Address Avenue franklin roosevelt 50 1050 Bruxelles See on map Region Région de Bruxelles-Capitale/Brussels Hoofdstedelijk Gewest Région de Bruxelles-Capitale/ Brussels Hoofdstedelijk Gewest Arr. de Bruxelles-Capitale/Arr. Brussel-Hoofdstad Activity type Higher or Secondary Education Establishments Links Contact the organisation Opens in new window Website Opens in new window Participation in EU R&I programmes Opens in new window HORIZON collaboration network Opens in new window Other funding € 0,00