Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

High-Performance Biocompatible Ag-DLC Coatings - Precise and Localized Silver Doping Through Novel Helium Pulse Injections

Project description

High-performance silver doped carbon coatings for biomedical applications

Diamond-like carbon (DLC) films present exceptional mechanical properties that make them ideal as protective coatings. Due to their high hardness, low friction, and biocompatibility with living cells, silver-doped DLC coatings are highly valued in the biomedical field. Increased amounts of silver in the coating have shown to improve its biocompatibility, but excessive amounts could reduce its mechanical strength and durability and prove to be toxic to humans. The EU-funded HePULSE project plans to synthesise DLC coatings with a precise amount of silver nanoparticles at specific locations in the coating. The silver nanoparticles will be created in situ by rapid plasma quenching and simultaneously embedded in the DLC matrix in a single-step process.

Objective

Diamond-like carbon (DLC) coatings are renowned for their excellent mechanical properties and biocompatibility. The overall DLC market is projected a compound annual growth rate (CAGR) of 14% by 2020, while the DLC in biomedical sector alone is growing with a CAGR of 33%, which is inspiring advanced DLC research for biomedical use. Hard DLC coatings have poor toughness which limits their application for joint implants that involve impact, shear, and torsion. Silver-doped DLC coatings (Ag-DLC) are increasing in popularity in the biomedical sector as they boost biocompatibility and toughness of pure DLC coatings simultaneously. The biocompatibility of Ag-DLC is shown to increase by increasing Ag fraction, but excessive Ag reduces the mechanical strength and durability and a high Ag dose may become toxic to the patient if the coating fails. We have identified that Ag is essential for early post-surgery, thus it would be highly beneficial to develop a coating where Ag is only doped near the surface, providing maximum biological performance without reducing DLC strength. In fact, selective Ag doping in a DLC matrix is challenging through established physical vapour deposition techniques.

In this project, we are aiming to develop a novel DLC coating with precise and localized doping of Ag nanoparticles using the sputtering method. The Ag nanoparticles will be created in-situ by rapid plasma quenching with He pulses and simultaneously embedded in the DLC matrix in a single-step process. The unique features are precise amounts and specific size of Ag nanoparticles which will be embedded at controlled depths in the DLC matrix. The coatings will be tested for biological functioning i.e. biocompatibility and antimicrobial tests and mechanical performance, which includes hardness, toughness, and tribology. The new Ag-DLC coatings are expected to present a simultaneous improvement in biological and mechanical performance due to their unique tailor-made architecture.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

UNIVERSITY OF NORTHUMBRIA AT NEWCASTLE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 224 933,76
Address
SUTHERLAND BUILDING COLLEGE STREET
NE1 8ST NEWCASTLE UPON TYNE
United Kingdom

See on map

Region
North East (England) Northumberland and Tyne and Wear Tyneside
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 224 933,76
My booklet 0 0