Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

High-Performance Biocompatible Ag-DLC Coatings - Precise and Localized Silver Doping Through Novel Helium Pulse Injections

Description du projet

Revêtements de carbone dopé à l’argent à haut rendement pour les applications biomédicales

Les films de carbone amorphe (DLC pour diamond-like carbon) présentent des propriétés mécaniques exceptionnelles qui en font des revêtements de protection par excellence. En raison de leur grande dureté, de leur faible friction et de leur biocompatibilité avec les cellules vivantes, les revêtements DLC dopés à l’argent sont très prisés dans le domaine biomédical. Une augmentation des quantités d’argent dans le revêtement a démontré une amélioration de sa biocompatibilité, mais des quantités excessives pourraient réduire sa résistance mécanique et sa durabilité et s’avérer toxiques pour l’homme. Le projet HePULSE, financé par l’UE, projette de synthétiser des revêtements DLC avec une quantité précise de nanoparticules d’argent à des endroits précis du revêtement. Les nanoparticules d’argent seront créées in situ par une trempe rapide au plasma et simultanément incorporées dans la matrice DLC en une seule étape.

Objectif

Diamond-like carbon (DLC) coatings are renowned for their excellent mechanical properties and biocompatibility. The overall DLC market is projected a compound annual growth rate (CAGR) of 14% by 2020, while the DLC in biomedical sector alone is growing with a CAGR of 33%, which is inspiring advanced DLC research for biomedical use. Hard DLC coatings have poor toughness which limits their application for joint implants that involve impact, shear, and torsion. Silver-doped DLC coatings (Ag-DLC) are increasing in popularity in the biomedical sector as they boost biocompatibility and toughness of pure DLC coatings simultaneously. The biocompatibility of Ag-DLC is shown to increase by increasing Ag fraction, but excessive Ag reduces the mechanical strength and durability and a high Ag dose may become toxic to the patient if the coating fails. We have identified that Ag is essential for early post-surgery, thus it would be highly beneficial to develop a coating where Ag is only doped near the surface, providing maximum biological performance without reducing DLC strength. In fact, selective Ag doping in a DLC matrix is challenging through established physical vapour deposition techniques.

In this project, we are aiming to develop a novel DLC coating with precise and localized doping of Ag nanoparticles using the sputtering method. The Ag nanoparticles will be created in-situ by rapid plasma quenching with He pulses and simultaneously embedded in the DLC matrix in a single-step process. The unique features are precise amounts and specific size of Ag nanoparticles which will be embedded at controlled depths in the DLC matrix. The coatings will be tested for biological functioning i.e. biocompatibility and antimicrobial tests and mechanical performance, which includes hardness, toughness, and tribology. The new Ag-DLC coatings are expected to present a simultaneous improvement in biological and mechanical performance due to their unique tailor-made architecture.

Coordinateur

UNIVERSITY OF NORTHUMBRIA AT NEWCASTLE
Contribution nette de l'UE
€ 224 933,76
Adresse
SUTHERLAND BUILDING COLLEGE STREET
NE1 8ST Newcastle Upon Tyne
Royaume-Uni

Voir sur la carte

Région
North East (England) Northumberland and Tyne and Wear Tyneside
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 224 933,76