Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

COupling data and techniques for BReakthroughs in EXoplanetary systems exploration

Project description

Advanced digital processing techniques aid search for giant planets outside our solar system

Astronomers first discovered exoplanets – planets outside our own solar system – 30 years ago. Telescope and modelling capabilities are enabling them to gain new insight into how planetary systems form and evolve. However, instruments are limited in their ability to provide high-resolution data at lengths between 5–20 au, where giant planets primarily form through gas accretion. Although the Gaia and ELT future space telescopes are expected to significantly advance our knowledge in this region, instrument costs will probably be high. The EU-funded COBREX project will apply advanced signal processing techniques to imaging data obtained by SPHERE and GPI high-contrast imaging instruments. The ultimate aim is to improve the detection capability of telescopes in lengths beyond 5 au by at least one order of magnitude.

Objective

Exoplanetology has become a major topic in astronomy over the last 30 years. New observing capabilities and
modelling have revolutionised the understanding of how planetary systems form and evolve. Yet, the 5-20 au
region, where the giant planets formed by accretion of gas on to a solid core are supposed to form predominantly,
remains barely explored due to instrumental limitations. GAIA and the E-ELT instruments will be well suited to
explore planetary systems at this scale. However, I believe that exploring this region is possible right now, at a
small cost, with the use of recent innovative signal processing developments applied to current High Contrast
Imaging (HCI) data and/or the use of high-performance, AO-fed medium/high resolution spectrographs.
With COBREX, I want to apply such new data processing techniques on the largest library of SPHERE and GPI
HCI data to gain at least one order of magnitude (hence a gain of ~3 in mass/separation) on current planet and disk
detection limits in the 5-20 au region. This will allow witnessing, for the first time, analogues of our Solar System
Giants at early ages, and constraining the distribution of GPs in the 5-20 au. Combining in different ways various
data (HCI, GAIA, RV) will allow exploring the demography of young giant planets at all separations. Then, I want
to couple HCI with medium/high resolution spectroscopy, to find and study planet properties into exquisite details,
and investigate in an unprecedented way the link between disks and planets. Finally, I wish to explore the possibility
of imaging remote magmatic super-Earths in the near future thanks to such improvements.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-ADG - Advanced Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2019-ADG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 495 266,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 495 266,00

Beneficiaries (1)

My booklet 0 0