Objetivo
There are many examples in physics when dynamics of the system in question can be shown to be integrable, i.e. entirely determined by the algebraic structure underlying its symmetries. It seems that the integrability is an emerging new principle of Nature, universal and ubiquitous. In particular, there are many recent examples of appearance of the integrable structure (exactly solvable non-linear partial differential equations) in quantum field theories (Yang-Mills theories), condensed matter systems (quantum Hall systems and various growth phenomena) and string theory models (matrix models, non-critical string theories).
The current project aims at exploration of the integrable structure of these and other phenomena and exploiting the powerful mathematical apparatus of the theory of integrable systems for gaining new information and proving new results in the fields of both condensed matter and particle physics. In particular, it is suggested to apply these methods to analytically construct conformal field theory description of edge-excitations of quantum Hall systems (both integer and fractional cases) as well as to the description of fingering in growth phenomena (such as e.g. Laplacian growth). Both are long-standing problems with wide range of both theoretical and experimental consequences. It is also proposed to use literally the same methods to describe quite different physically, but surprisingly close mathematically phenomena in the description of low-energy effective theories of (super-symmetric) gauge theories and their description in the language of string theory, as well as to different models of quantum gravity.
The progress here will come from the fact that integrable system has an exact non-perturbative description, thus overcoming the main difficulty of the strongly correlated systems (of which both non-Abelian gauge theories and gravity are examples) - limited applicability of the perturbative description.
Ámbito científico (EuroSciVoc)
- ciencias naturales ciencias físicas física teórica física de partículas
- ciencias naturales ciencias físicas física cuántica teoría cuántica de campos
- ciencias naturales ciencias físicas física teórica teoría de cuerdas
- ciencias naturales matemáticas matemáticas aplicadas física matemática teoría de campos conformes
- ciencias naturales matemáticas matemáticas puras análisis matemático ecuaciones diferenciales ecuaciones diferenciales parciales
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
FP6-2002-MOBILITY-7
Consulte otros proyectos de esta convocatoria
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
IIF - Marie Curie actions-Incoming International Fellowships
Coordinador
BURES-SUR-YVETTE
Francia
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.