Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

Design study of an innovative high-intensity industrial cyclotron for production of Tc-99m and other frontier medical radioisotopes

Description du projet

Une étude de conception des cyclotrons à haute intensité pour la production de radioisotopes médicaux

Le technétium 99m (99mTc) est un radioisotope métastable utilisé dans d’innombrables procédures diagnostiques médicales. De nos jours, il est quasiment exclusivement produit dans quelques réacteurs de recherche vieillissants dans le monde. Les produits radiopharmaceutiques à base de 99mTc sont appliqués dans les études d’imagerie et de fonctionnement du cerveau, du myocarde, de la thyroïde, des poumons, du foie, de la vésicule biliaire, des reins, du squelette, du sang, ainsi que de différentes tumeurs. Selon la procédure, le 99mTc est lié à un composé qui le transporte jusqu’à sa destination cible. La production directe de 99mTc par les cyclotrons constitue l’approche la plus prometteuse pour accroître sa disponibilité, le défi clé résidant pourtant dans la conception d’un appareil compact à haute densité dénommé «cyclotron d’auto‑extraction» (SEC pour «self‑extracting cyclotron»). Le projet InnovaTron, financé par l’UE, améliorera la conception des aimants et de l’optique à faisceaux des SEC en se basant sur de nouvelles solutions technologiques.

Objectif

Tc99m is the most widely used isotope in nuclear medicine. Production is almost exclusively done with a few ageing research reactors worldwide. Recent shutdowns of some those reactors have resulted in a worldwide Tc99m shortage. Europe is affected, because it is the second largest consumer of Tc99m worldwide. In response to growing concerns about Tc99m availability and the increasing demand in medicine, alternative production routes are being explored in the community. Direct production by proton cyclotrons looks the most promising solution. Cyclotrons offer several advantages, one of them being the possibility for local production, as is done for other commonly used medical isotopes. Large-scale production of Tc99m requires high proton beam intensities. InnovaTron focuses on a cutting-edge research project in accelerator design. The key challenge is the design of an innovative compact high-intensity cyclotron, named ‘self-extracting cyclotron’. In this machine, the proton beams exit without using an extraction device. Such devices usually prevent the extraction of high beam currents as would be needed for Tc99m production. A prototype machine was built by the company IBA around the year 2000. Self-extraction was successfully proven by extracting a current close to 2 mA. However, rather poor beam quality was observed resulting in too high machine activation and a maximum extraction efficiency not larger than 80%. This was encouraging but not yet good enough for industrial applications. InnovaTron will improve the magnet design and the beam-optics of the self-extracting cyclotron based on new technological solutions. It will be realized using high-level computer-aided design and beam physics studies. Key goals are: i) high currents up to 10 mA or more, ii) extraction efficiency higher than 95%, iii) beam quality at least a factor three better than the prototype.
This cyclotron will allow production of high quantities of Tc99m and other frontier medical isotopes.

Coordinateur

ION BEAM APPLICATIONS SA
Contribution nette de l'UE
€ 166 320,00
Adresse
CHEMIN DU CYCLOTRON 3
1348 Ottignies Louvain La Neuve
Belgique

Voir sur la carte

Région
Région wallonne Prov. Brabant Wallon Arr. Nivelles
Type d’activité
Private for-profit entities (excluding Higher or Secondary Education Establishments)
Liens
Coût total
€ 166 320,00