Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Designing of Environmentally Friendly Colloidal Nanocrystals for Sustainable Solar Cell Manufacturing

Project description

Shining new light on solar cells

Photovoltaics (PV) is the conversion of sunlight to electrical energy with the use of solar cells. Moving away from silicon, thin-film solar cells are a promising option for substantially reducing the cost of PV systems. As such, thin-film solar cells will take the lead in prevention of energy waste. The EU-funded SUSNASOL project will build a new platform of low-temperature, high-throughput manufacturing of nanocrystal (NC) solar cells. Specifically, it will design environment-friendly, critical raw material-free nanomaterials with excellent optoelectronic properties. The findings will assist in realising the full potential of Cu2ZnSnS4 nanocrystals, CZTS NCs – a material that is capable of driving the development of low-cost and high-performance PV. The project will build on many scientific breakthroughs in the field of thin-film and colloidal NCs in recent years.

Objective

High-efficiency and low-cost solar cells are demanding to address the issue of the increasing global energy consumption and greenhouse gases emission. This stimulates the evolution of photovoltaic (PV) technologies from crystalline silicon (first generation) to thin film PV (second generation) with promises in further lowered cost and new building integrated applications (BIPV). However, facing problems of toxic and scarce materials (e.g. CdTe, CIGS, etc.) as well as the detrimental issue of defects (kesterite or CZTS) in the available solar cell technologies, SUSNASOL propose to build the new platform of low-temperature, high-throughput manufacturing for antisite-disorder suppressed, high-efficiency Ag2ZnSn(S,Se)4 or (Cu,Ag)2ZnSn(S,Se)4 (CAZTS) nanocrystal (NC) solar cells. By referring to many scientific breakthroughs in the field of thin film and colloidal NCs photovoltaics in recent years, and combining the extensive expertise in colloidal NC PVs of the hosting group with the developed material processing skills spanning chemistry, physics, and engineering of the experienced research (ER), this project aims at specific research objectives including designing environment-friendly, CRM-free nanomaterials with excellent optoelectronic properties; exploiting nanoscale tenability via colloidal chemistry to passivate this new class of NC materials; applying only mild sintering, and optimizing new device architecture (e.g. superstrate p-i-n, bulk nano-heterojunctions,etc.) to unlock the full potential of CAZTS NCs. This fellowship will be carried out at ICFO – The Institute of Photonic Sciences in Spain, supervised by Prof. Gerasimos Konstantatos.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

FUNDACIO INSTITUT DE CIENCIES FOTONIQUES
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 172 932,48
Address
AVINGUDA CARL FRIEDRICH GAUSS 3
08860 Castelldefels
Spain

See on map

Region
Este Cataluña Barcelona
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 172 932,48
My booklet 0 0