European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Vibrational Spectroscopy for Molecular Crystals via Quantum-Mechanical Embedding Methods

Descripción del proyecto

Un método rentable para estudiar los espectros vibratorios de cristales moleculares

El estudio computacional de las fases condensadas de compuestos moleculares constituye un reto muy complejo. El aumento del coste computacional relacionado con la modelización de estados excitados se agudiza por la necesidad de sistemas de mayor tamaño en estos materiales. El proyecto financiado con fondos europeos VibMolCryst utilizará un método híbrido de mecánica cuántica y mecánica molecular (MC/MM) para estudiar los espectros vibratorios y las propiedades de cristales moleculares. El método combina la precisión y la velocidad de los enfoques de MC y MM, respectivamente. Se espera que este método computacionalmente asequible ayude a interpretar los espectros de terahercios de baja frecuencia, utilizados, por ejemplo, en la detección de explosivos. Además, podría aumentar la precisión de las estabilidades termodinámicas calculadas, lo cual es fundamental para el desarrollo de fármacos.

Objetivo

By this project, the routine calculation of anharmonic vibrational spectra and properties for practically relevant molecular crystals will be enabled via the usage of a quantum-mechanical (QM:QM) embedding approach. All monomers and relevant dimers are treated with a high-level method, while the fully periodic system is considered at a lower level. Highly accurate vibrational spectra can be obtained for small molecular systems with benchmark CCSD(T) utilizing second-order vibrational perturbation theory (VPT2) only with a computational cost prohibitive for routine applications involving larger systems. Therefore, the applicant will create a diverse benchmark set of monomers and molecular dimers covering a wide range of intermolecular interactions and subsequently benchmark the performance of various dispersion-inclusive density functional approximations (DFA) against CCSD(T) for vibrational properties calculated with VPT2, independent Morse oscillators, and the harmonic approximation. Next, the QM:QM embedding approach for molecular crystals will be extended from available gradients to the calculation of harmonic vibrational spectra, which will already enable the usage of hybrid DFAs at a cost comparable to the generalized-gradient approximation. Subsequently, VPT2 calculations for monomers and dimers will be incorporated in the embedding scheme and the accuracy of the so obtained anharmonic vibrational spectra will be assessed for a variety of molecular crystals using promising DFAs identified during the first stage of the project. This methodology will be computationally affordable for practically relevant molecular crystals and is expected to aid peak assignments and interpretation of low-frequency THz spectra—used for instance for the detection of explosives. This approach is also expected to increase the accuracy of calculated thermodynamical stabilities, which is critical for drug development since existing molecular crystal polymorphs are almost degenerate.

Coordinador

UNIVERSITAET GRAZ
Aportación neta de la UEn
€ 174 167,04
Dirección
UNIVERSITATSPLATZ 3
8010 Graz
Austria

Ver en el mapa

Región
Südösterreich Steiermark Graz
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 174 167,04