Project description
New algebraic approaches to describe the probability of fuzzy statements
In probability theory, real events differ from mathematical events – they can only be assigned a value of 0 or 1 depending on whether they are verified at some point in time or not. In logical terms, they are either true or false. The EU-funded PROREAL project plans to use algebraic semantics tools to study fuzzy logic, which assigns 'degrees of truth' rather than the usual 'true or false' to treat real declarative statements that are vague. The truth value of these statements may range between completely true and completely false. Special focus will be placed on studying fuzzy connectives based on t-norms.
Objective
The goal of this project is to develop logico-algebraic and measure theoretical techniques to study the probability theory of real-valued events. The classical approach to probability only allows the study of events that at some moment will either be verified or not. In more logical terms, they will become either true or false. In order to be able to treat the intrinsic vagueness of real-life declarative statements, we will study events whose truth-value can be intermediate, varying in the real unit interval (where 0 represents absolute falseness and 1 absolute truth). Our focus will be on the state theory, i.e. probability theory, of continuous (or more generally left-continuous) t-norm based fuzzy logics. The study will be carried out by the point of view of the algebraic semantics of such logics, which has proven to be extremely fruitful in recent years, showing interesting connections to measure theory. Indeed, in different fuzzy logics it is possible to introduce a notion of probability map on the algebras of formulas in such a way that it axiomatizes the Lebesgue integral of the formulas (which, thanks to universal algebraic results, can be seen as real-valued functions). As a most challenging goal, we will investigate the minimal properties for a logic to allow the axiomatization of a probability theory axiomatizing the Lebesgue integral of formulas. Moreover, as in recent years the artificial intelligence perspective is emerging, we will develop logical frameworks for many-valued probabilistic reasoning, and study the satisfiability of the probabilistic assertions for such logics. The study will strongly ground on preliminary work of research the fellow has conducted in recent years. Moreover, it will benefit from the broad experience of the supervisor as a leading researcher in the field, and of the high level, multidisciplinary environment of the hosting institute.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences mathematics pure mathematics algebra
- natural sciences mathematics applied mathematics statistics and probability
- natural sciences computer and information sciences artificial intelligence computational intelligence
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28006 MADRID
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.