Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Magnetic Sounding of Mars

Project description

Probing the Red Planet’s magnetic field activity

The deep interior of a planet carries information regarding its formation and evolution. Investigating these parameters is the goal of the ongoing InSight mission – NASA’s robotic lander designed to study the deep interior of Mars. Amongst the cutting-edge science tools is the magnetometer, which detects magnetic signals. The EU-funded MarsMag project will study the Martian magnetic data measured by InSight to probe the electrical conductivity structure of the Red Planet. Using powerful techniques such as electromagnetic sounding, the project is expected to reveal more about the planet’s mineralogy, temperature and volatile element content. Furthermore, it will help shed light on other important questions such as presence of crustal water, which has implications for the habitability of extraterrestrial bodies.

Objective

Magnetic sounding is a powerful tool to explore the interior structure of a planetary body because electrical conductivity carries information on mineralogy, temperature and volatile content. We propose to apply this to Mars and thus shed light on important questions such as crustal water and therefore habitability of extraterrestrial bodies.
Magnetic sounding relies on the principle that external fields induce currents in the subsurface. These induced responses provide information on subsurface electrical conductivity structure and can be measured from orbit and on the ground. While a range of techniques have mainly been developed for terrestrial investigations, this field of study has mostly been unexplored for other planets. Here, the magnetic field environment dictates the nature and geometry of the inducing external fields, and often times limited data sets pose new challenges. We plan to fully exploit martian data sets from orbit and on the ground to (1) characterize the magnetic field environment of Mars and (2) explore the electrical conductivity structure within the planet. This project will also pave the way for applying magnetic sounding methodologies to other terrestrial bodies, including Merurcy or the Moon.
The deep interior of a planet or moon carries information on its formation and evolution and contributes to the goals of ongoing planetary missions such as the InSight mission to Mars. InSight, the first surface mission equipped with a magnetometer landed on Mars last fall and the host professor and the candidate are involved as Co-PI on the seismometer team and as science investigator on the magnetometer team, respectively. This Fellowship will therefore contribute and further consolidate ETH involvement with InSight. Finally, Martian seismic activity thus far seems to originate mainly in the crust and complementary investigations using magnetic sounding will improve our understanding of crust and mantle structure and its relations to marsquakes.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-MSCA-IF-2019

See all projects funded under this call

Coordinator

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 191 149,44
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 191 149,44
My booklet 0 0