Project description
Understanding hydrogen-enhanced natural gas characteristics
Alternative fuels are demanded as a solution against rising environmental degradation. Hydrogen-enhanced natural gas is proposed as a key factor in the decarbonisation process of the gas intended for residential buildings and power generation. However, knowledge on the turbulent combustion and explosion characteristics of hydrogen-enhanced natural gas is limited, resulting in deceleration of its commercial spread. The EU-funded HYGAS project will address this gap in knowledge by advancing understanding of the turbulent combustion characteristics of hydrogen-enhanced natural gas. The project will use numerical studies combined with existing experimental data. It will develop a solid modelling method for combustion with reduced chemical reaction mechanisms to support effective coupling with computational fluid dynamics models.
Objective
The growing crisis of serious environmental degradation necessitates the demand for alternative fuels. Hydrogen-enhanced natural gas is playing an increasingly important role to decarbonize the gas going into people’s homes and for power generation. However, there are substantial knowledge gap concerning the turbulent combustion and explosion characteristics of hydrogen-enhanced natural gas, which makes great challenge in associated combustion systems and safety issues. Such knowledge gaps hinder the progress of wide deployment of Hydrogen-enhanced natural gas to achieve the ambitious target for decarbonization.
The proposed research aims to bridge these knowledge gaps by gaining insight about the turbulent combustion characteristics of hydrogen-enhanced natural gas through numerical studies aided by existing experimental data. The Fellow will develop a robust modelling approach for the combustion of such blended fuel with reduced chemical reaction mechanism to facilitate effective coupling with computational fluid dynamics (CFD) models. The reduced mechanism will be designed to firstly reproduce the fundamental combustion characteristics concerning ignition and laminar flame speed for validation before being implemented in open source CFD code OpenFOAM. The following specific research objectives are set towards achieving this goal:
⁃ Improve detailed kinetic mechanism HP-Mech for hydrogen-enriched natural gas and validate the mechanism with available laminar flame speed, ignition delay time, and species profile, etc. in the literature;
⁃ Develop reduced kinetic mechanism using the PFA method and perform validations through comparison with the predictions of the detailed mechanism;
⁃ Conduct CFD simulations using the newly developed reduced mechanism for small scale scenarios where test data are available for validation;
⁃ Extend CFD simulations to medium and large-scale scenarios for validation as well as applications.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques.
You need to log in or register to use this function
Keywords
Programme(s)
Funding Scheme
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinator
GU2 7XH Guildford
United Kingdom