Skip to main content
European Commission logo print header

EXamining CHemistry and Nanoparticle Geometry Effects at the INterface of Liquid CrystalS

Project description

Revealing the inner workings of liquid crystals

Liquid crystals are notorious for their use in tiny digital watches and large flat panel displays. However, little is known about the particle interactions that take place at the interfaces of liquid crystals. The EU-funded EXCHANGE_inLCs project has set out to elucidate the particle–liquid crystal interactions on the sub-micron scale by examining the chemistry and nanoparticle geometrical effects at the interfaces of liquid crystals. The research will focus on how particle confinement, size and shape affect interactions. The project's results are expected to advance fundamental knowledge of nanoparticle self-assembly in anisotropic fluids, which is key to the development of new bottom-up approaches in nanotechnology.

Objective

The organization of nanoparticles is important for tuning material characteristics, impacting electronic and optical properties. Systems in nanotechnology are reliant upon self-assembly. Recently, liquid crystals, famous for displays, have been employed to self-assemble particles, due to the medium’s ability to form complex patterns. However, the exact interactions between nanoparticles and liquid crystals at the submicron scale remain ambiguous. EXCHANGE_inLCs seeks to elucidate particle-liquid crystal interactions at the submicron scale, by EXamining CHemistry and Nanoparticle Geometry Effects at the INterface of Liquid CrystalS through: 1) varying system GEOMETRY to elucidate the impact of confinement, particle size, and shape, and 2) varying system CHEMISTRY to clarify the activity of certain chemical species around particles. The project will be performed at Utrecht University, where the host has expertise in nanoparticle assembly and light nanoscopy. By varying system length scales and types of surface treatments, key interactions can be isolated.

The project will facilitate the following two-way transfer of knowledge between the host and me: A) The host has innovated methods of functionalizing, manipulating, and imaging particle assemblies, down to the single-particle resolution. Both skills are essential for me to investigate my systems at a challenging length scale where both chemistry and geometry can be equally influential. B) The host has a history of exploring the ordering of rod-like particles (colloidal liquid crystals), and my expertise in patterning rod-like molecules (molecular liquid crystals) would complement their body of knowledge. We share a mutual interest in interparticle interactions and their effects on self-assembly. The project combines our areas of expertise to advance fundamental knowledge of nanoparticle self-assembly in anisotropic fluids, essential for developing new bottom-up approaches in nanotechnology, a European priority.

Coordinator

UNIVERSITEIT UTRECHT
Net EU contribution
€ 187 572,48
Address
HEIDELBERGLAAN 8
3584 CS Utrecht
Netherlands

See on map

Region
West-Nederland Utrecht Utrecht
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 187 572,48