Project description
Predicting extreme weather events
Improving the prediction of extreme weather events is a key objective of the aviation industry in order to eliminate unexpected scenarios that compromise safety. The EU-funded SINOPTICA project will set up an updated database of remote sensing-derived, global navigation satellite system-derived and in situ weather stations variables, to be combined with an automated assimilation system that will feed a numerical weather model. SINOPTICA weather forecast results will be integrated into air traffic management decision support tools in order to visualise weather information on the controller's display and to generate new 4D trajectories to avoid severe weather areas.
Objective
"The SINOPTICA project aims at exploiting the untapped potential of assimilating remote sensing (EO-derived and ground-based radar) as well GNSS-derived datasets and in situ weather stations data into very high-resolution, very short-range numerical weather forecasts to provide improved prediction of extreme weather events to the benefit of ATM operations. This will be done by setting up a continuously updated database of remote sensing-derived, GNSS-derived and in situ weather stations variables, in combination with an automated assimilation system to feed an NWM. The usefulness of deploying dedicated networks of sensors to monitor atmospheric variables at high spatial resolution in the vicinity of ATM ""hotspots"" such as airports will be investigated as well. SINOPTICA weather forecast results will be integrated into ATM decision-support tools, visualizing weather information on the controller's display, and generating new 4D trajectories to avoid severe weather areas. The usefulness of the newly developed SINOPTICA tools will be monitored during the project and evaluated, thanks to the involvement of ATM stakeholders in the project consortium and advisory board."
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesearth and related environmental sciencesatmospheric sciencesmeteorology
- natural sciencescomputer and information sciencesdatabases
- engineering and technologyenvironmental engineeringremote sensing
- engineering and technologyelectrical engineering, electronic engineering, information engineeringinformation engineeringtelecommunicationsradio technologyradar
- engineering and technologyelectrical engineering, electronic engineering, information engineeringelectronic engineeringsensors
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
Funding Scheme
RIA - Research and Innovation actionCoordinator
17100 Savona
Italy