Skip to main content

Automated synthesis methodology for reliable RF integrated circuits

Objective

Due to the constant need for connectivity, radio-frequency (RF) circuits will be of upmost importance in applications developed for the Internet of Things (IoT), the fifth-generation (5G) broadband technology and electronic health (eHealth) monitoring. However, the design of RF circuits in nanometric technologies for IoT/5G/eHealth applications is becoming extraordinarily difficult due to the high complexity and demanding performances of such circuits/systems. The need for high performance, low power, low voltage and low area circuits is immense and traditional design methodologies based on iterative, mostly manual, processes are unable to meet such challenges. Consequently, current EDA tools are getting out-of-date because they were developed to support that kind of traditional methodologies. Also, the short time-to-market demanded by nowadays IoT/5G/eHealth applications is creating a design gap, thus leading to a productivity decrease in the deployment of such IoT/5G/eHealth applications. In this framework, the focus of the SYSTEMIC-RF (Automated synthesis methodology for reliable RF integrated circuits) project is to develop a new design methodology that allows optimization-based synthesis approaches of RF circuits, where the circuit sizing and layout are treated in a complete and automated integrated fashion, in order to achieve fully optimal designs in much shorter times than traditional approaches. Moreover, the methodology will also take into account circuits' and systems' time-zero and time-dependent variability, and will be integrated in a state-of-the-art EDA tool in order to ease its usability. This EDA tool will definitely help RF designers to meet the very demanding specifications of IoT/5G/eHealth applications in a reasonable time.

Call for proposal

H2020-MSCA-IF-2019
See other projects for this call

Funding Scheme

MSCA-IF-EF-ST - Standard EF

Coordinator

INSTITUTO DE TELECOMUNICACOES
Address
Campus Universitario De Santiago Universidade De Aveiro
3810 193 Gloria E Vera Cruz
Portugal
Activity type
Research Organisations
EU contribution
€ 147 815,04