European Commission logo
English English
CORDIS - EU research results
CORDIS

Quantum Conductance of Neutral Gas Molecules

Project description

A novel experimental setup has quantum gases going ballistic

Ballistic conduction or transport typically refers to the movement of charge carriers like electrons or holes over large distances unimpeded by scattering interactions, akin to the motion of a speeding bullet. Although scientists theorised that it should not only apply to electric charges, neutral atoms in an ultraballistic regime were first observed in a special type of quantum gas only a few years ago at ultra-low temperatures. The EU-funded QCNGas project is developing an innovative experimental platform that will support investigations of quantum gas conductance as a function of temperature down to four degrees Kelvin. The studies will aid the search for new materials with ballistic transport close to room temperature.

Objective

We propose to design a new insert with a sample-holder and investigate quantum aspects of flow (gas) conductance as a function of temperature (T) down to 4K by exploiting de Broglie wavelength for neutral helium (He) atoms through an atomically-flat rectangular graphene nanochannel in a molecular flow regime. By confining the vertical length of the transport channel and tuning the associated de Broglie wavelength (with T), the realization of the quantum limited conductance for He gas flow, similar to the observed quantum signatures of conductance for electrons, seems to be truly within the experimental reach. The behaviour of the wall switches over to more rigid (lowering atomic vibrations) from flexible one at room T which not only enhances the specular reflection but also the phase coherence of the associated de Broglie wavelength. We will investigate the transport properties using layered materials from transition metal dichalcogenides (TMDs) family to induce ballistic transport from the diffusive transport regime at room T via Laser-irradiation and chemical roots which will heal the defects in TMDs at atomic scale. Our investigations will help in search of more materials to have the ballistic transport around room T. Our focus will not only be on the enhanced flow due to quantum effects but also the understanding from fundamental physics point of view as well as exploring in broader perspective. The strategy of the project is to design a setup for low-T, making state-of-the-art devices, investigate the quantum signatures of conductance of nanoscale channels and address various important issues. Completion of the multidisciplinary project will open up a new era where various novel intriguing physics need to be explored further, understanding of quantum gas transport will boost many biomedical and industrial applications, next generation devices using gas sensors and properties of thermal transport exploited to extract heat will be tuned with enhanced performance.

Coordinator

THE UNIVERSITY OF MANCHESTER
Net EU contribution
€ 212 933,76
Address
OXFORD ROAD
M13 9PL Manchester
United Kingdom

See on map

Region
North West (England) Greater Manchester Manchester
Activity type
Higher or Secondary Education Establishments
Links
Total cost
€ 212 933,76