Project description
Lee-Yang theorem extends to the quantum realm to describe quantum many-body systems
Lee-Yang theory provides a description of phase transitions and analytic properties of thermodynamic functions based on the distribution of partition function zeros. Lee-Yang zeros are no longer just a theoretical concept; they have recently been determined from measurements of fluctuating observables, offering a completely new perspective on phase transitions in interacting many-body systems. The EU-funded QuLeeYang project will expand the Lee-Yang theory beyond classical equilibrium systems. It will formulate a unifying theory of phase transitions in interacting quantum many-body systems from the perspective of Lee-Yang zeros and will make use of engineered quantum devices to test the predictions about phase transitions. The project's results will have important implications for quantum information processing and quantum thermodynamics.
Objective
Over the last years, investigations of Lee-Yang zeros – complex zeros of the partition function for systems of finite size – have become an indispensable theoretical tool in equilibrium statistical physics with diverse applications, ranging from protein folding and percolation to complex networks and magnetism. In the thermodynamic limit, the Lee-Yang zeros approach the real value of the control parameter for which a phase transition occurs. Despite these developments, surprisingly little attention has so far been devoted to applications of Lee-Yang theory beyond classical equilibrium systems. One reason may be that Lee-Yang zeros (being complex values of physical quantities) for years were seen as a purely theoretical concept with little relevance to experiments. However, this view has recently been contested by several experiments, in which Lee-Yang zeros have been determined. A novel cumulant method allows for the determination of Lee-Yang zeros from measurements of fluctuating observables, thus offering a completely new perspective on phase transitions in interacting many-body systems. Here, building on this cumulant method, I propose to formulate a unifying theory of phase transitions in interacting quantum many-body systems, including space-time, dynamical, and quantum phase transitions, from the perspective of Lee-Yang zeros. I will connect this theoretical framework to large-deviation statistics, fluctuation relations, and many-body entanglement in non-classical systems. Furthermore, I will devise experimental schemes to test my predictions and, in particular, investigate quantum phase transitions in engineered quantum devices. Fulfilling these objectives will expand the field far beyond its current state-of-the-art and potentially result in major scientific breakthroughs with important implications for other research fields, such as quantum information processing and quantum thermodynamics.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences thermodynamics
- natural sciences biological sciences biochemistry biomolecules proteins protein folding
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.