Project description
Twisted graphene superlattices emerge as a potential candidate for terahertz radiation
Under the influence of a constant force, a particle confined in a periodic potential of a crystal lattice undergoes the so-called Bloch oscillations. This quantum phenomenon has lately been of great interest to physicists as there is evidence that these oscillations can generate coherent terahertz radiation. So far, progress in the field has been hampered by a lack of suitable materials that emit this radiation. The EU-funded BlochTG project will probe the intrinsic light–matter interactions of Bloch oscillations in twisted graphene superlattices. The superlattice potential that is intrinsic to this 2D heterostructure disperses electronic states within a significantly small Brillouin zone, making it a good candidate for Bloch oscillations. Most importantly, it could prove to be an ideal test bed for terahertz applications.
Objective
For the next generation of photonic applications, there is a growing need for solid-state devices operating in the terahertz regime. Bloch oscillations – one of the oldest known quantum phenomena–describes the fundamental behaviour of electrons in crystals in which a strong DC electric-field should cause electron oscillations in real-space that emit radiation. The effect thus provides a unique route towards tunable terahertz technologies. However, experimental studies and the development of technologies based on Bloch oscillations have been hampered due to a lack of suitable materials. Twisted graphene superlattices have recently emerged as an exciting new class of 2D heterostructures whose electronic spectra can be dramatically modified by twisting the crystal layers relative to one another, creating exotic materials that do not exist in nature. In particular, the superlattice potential that is intrinsic to these systems disperses electronic states within a significantly small Brillouin zone, making them ideal candidates for Bloch oscillations. Using a combination of electrical measurements and world-unique cryogenic near-field/far-field terahertz optics, Project BlochTG combines the disciplines of quantum transport and quantum optics to probe the intrinsic light-matter interactions of Bloch oscillations in twisted graphene superlattices. The action will be carried out by the experienced researcher, who is an expert on quantum transport in twisted graphene superlattices, in the lab of Professor Frank Koppens, who has spent the last ten years pioneering the near-field optics techniques described in this proposal. Project BlochTG hence outlines a timely research effort that seeks to understand the foundations of solid-state physics whilst simultaneously investigating novel device concepts for future terahertz technologies, in-line with key objectives of the Horizon 2020 European Roadmap for Graphene Science and Technology.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology nanotechnology nano-materials two-dimensional nanostructures graphene
- natural sciences physical sciences condensed matter physics solid-state physics
- natural sciences physical sciences optics
- natural sciences physical sciences quantum physics quantum optics
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
08860 Castelldefels
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.