Skip to main content
European Commission logo
français français
CORDIS - Résultats de la recherche de l’UE
CORDIS

MAgneto-elastic coupling eXploitation in Bulk Acoustic Resonators

Description du projet

Les ondes de spin induites par le son se révèlent prometteuses pour les dispositifs à micro-ondes à faible consommation d’énergie

Les ondes de spin, qui propagent des perturbations dans l’organisation des matériaux magnétiques, pourraient constituer un moyen de transmettre et de traiter des informations dans les appareils mobiles avec un meilleur rendement et une moindre consommation d’énergie. Des recherches récentes ont démontré que ces oscillations peuvent être contrôlées par des ondes sonores. Ce couplage est susceptible d’être exploité pour fournir des interfaces micro-ondes à haut rendement énergétique pour les ondes de spin, ce qui est un élément essentiel pour le développement de dispositifs micro-ondes magnétiques. Le projet MAXBAR, financé par l’UE, prévoit d’intégrer des signaux d’ondes de spin de faible puissance à des résonateurs d’ondes acoustiques de pointe communément utilisés dans les systèmes de communication par radiofréquence pour distinguer les signaux à différentes fréquences. Pour atteindre ses objectifs, le projet mènera des recherches à la frontière entre le nanomagnétisme, l’acoustique, l’ingénierie des micro-ondes et les systèmes micro-électromécaniques.

Objectif

There is an ever increasing amount of data that needs to be transmitted, processed, and stored by mobile communication technologies like today’s smartphones and tomorrow’s numerous connected devices. Presently, the raw measurement signals need to be amplified, pre-conditioned, and converted to digital signals before they can be processed. Thus, there is clear impetus to supplement next generation radio technologies with analog signal processing functionalities to perform computation directly on the measured signals. By conducting research at the interface between nanomagnetism, acoustics, microwave engineering and micro-electromechanical systems, MAXBAR aims to integrate low power spin-wave signal processing capabilities with state-of-the-art acoustic wave resonators widely used in RF communication systems to distinguish between signals at different frequencies. It is motivated by the premise that the coupling between spin-waves and acoustic waves in nanosystems can be leveraged (i) to overcome the intrinsic limitations plaguing acoustic wave technology, and (ii) to simultaneously deliver an energy efficient microwave interface for spin waves – the holy grail of magnonics. The primary objective is to establish a platform in which strongly hybridized magneto-elastic resonant modes enables new technological functionalities, such as the tunability of bulk acoustic wave filters and the development of non-reciprocity in acoustical wave based delay lines. The project builds upon the host institution’s expertise in microwave measurements of spin-wave propagation, interference processes and magnetization dynamics, while relying on next-generation acoustic wave resonators developed at the secondment institute to demonstrate its objectives. The applicant is an expert in the design, fabrication and characterization of nanomechanical microwave devices and will thus complement its skills by adding nanomagnetism and acoustics in his competences.

Coordinateur

UNIVERSITE PARIS-SACLAY
Contribution nette de l'UE
€ 196 707,84
Adresse
BATIMENT BREGUET - 3 RUE JOLIOT CURIE
91190 Gif-Sur-Yvette
France

Voir sur la carte

Région
Ile-de-France Ile-de-France Essonne
Type d’activité
Higher or Secondary Education Establishments
Liens
Coût total
€ 196 707,84