Project description
A metagenomics approach to studying the evolution of wild microbes
A drop of seawater contains a wide representation of marine microbes from around the world. Population genetics studies could disclose more information about the ecology and evolution of marine microbes. Furthermore, investigating the evolutionary process of wild microbes in the natural environment provides findings that are different from those derived from laboratory experiments. This knowledge is essential for understanding how globally important microbes respond to climate change. The EU-funded WildE project aims to quantify the rate of evolution in natural assemblages of marine microbes by combining metagenomics and time-series analysis data. Exploring wild microbes could reveal novel evolutionary patterns emerging as a consequence of ecosystem complexity and global change. Moreover, it could provide hints on the impact of horizontal gene transfer, recombination and viral infections on the genome composition of different species.
Objective
During the last two decades, there has been a huge increase in our knowledge of microbial diversity, phylogeny and genomics. However, we have limited knowledge on microbial population genetics and microevolution of wild microbes. Knowing the rate of evolution of wild microbes in the natural environment is crucial if we are to understand and predict how ecologically important marine microbes will cope as the oceans continue to change under global climate change. Laboratory experiment have been been useful for exploring the mechanisms of evolution in microbes. Yet, as a consequence of complex and variable biotic and abiotic interactions, the evolutionary process in ecosystems may be substantially different from what has been observed in lab experiments featuring relatively constant and simple environments. The next step to increase our understanding of microbial evolution is to investigate evolution of wild microbes in the natural environment. WildE aims to quantify the rate of evolution in wild marine microbes, using metagenomic time-series data (monthly samples over 7 years: 2009-2015). In addition, WildE will quantify the rate of evolution in natural assemblages of marine microbes, under selection pressure (elevated temperature) and measure how environmental selection changes population structure using an enclosed mesocosm experiment. Using both field investigations and mesocosm experiments will strengthen our understanding of evolutionary dynamics of wild populations. Exploring wild microbes will most likely reveal novel evolutionary patterns emerging as a consequence of ecosystem complexity, providing hints on the impact of horizontal gene transfer, recombination and viral infections on the genome composition of different species. The data produced here will be of interest to both scientists and policy makers and will increase our understanding of how ecologically important marine microbes will respond to future global change.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesgenetics
- natural sciencesbiological sciencesbiological morphologycomparative morphology
- natural sciencesbiological sciencesecologyecosystems
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Programme(s)
Funding Scheme
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinator
28006 Madrid
Spain