Project description
An easier way to clean the air
The respiratory system is one of the main routes of exposure (inhalation) of microscale particles in polluted air. Trapping airborne particles by water droplets is the most widely used method to reduce the particle concentration in polluted air. This method, however, requires specialised equipment and a large amount of energy. The EU-funded TrapJump project will develop a new approach using abundant self-jumping droplets generated during condensation on a superhydrophobic surface. It will use cutting-edge confocal microscopy to analyse the condensing droplet wetting dynamics. It will also investigate the effects of jumping droplet characteristics on the particle-droplet interaction from a single-droplet perspective. The findings will make a conceptual breakthrough in mitigating air pollution without additional energy consumption.
Objective
Inhalation of microscale particles can cause severe health issues in respiratory and cardiovascular systems of humans. Trapping airborne particles by water droplets is one of the most widely used methods to reduce the particle concentration in polluted air. However, generating intensive micro-droplets via spraying or ultrasonic atomization normally requires specialized equipment and a large amount of energy. In this project, I propose a novel and cost-effective approach to capture particles by utilizing abundant self-jumping droplets generated during condensation on a superhydrophobic surface. Since the condensation process is ubiquitous and can be found in various heat transfer devices such as air conditioners, the proposed strategy will significantly reduce the expenses and energy costs for particle removal. In particular, to enhance the particle trapping rate, I intend to explore the rational superhydrophobic surface topography that allows continuous jumping-droplet condensation. I will first analyze the condensing droplet wetting dynamics using the cutting-edge confocal microscopy developed by the host lab. The results obtained will help to optimize the surface structures to achieve the durable condensate repellency. Next, I will investigate the effects of jumping droplet characteristics on the particle-droplet interaction from a single-droplet perspective. Finally, I will use my expertise in thermal physics to quantitatively correlate global condensation heat transfer and particle trapping performance. By integrating these interdisciplinary studies, the project will make a conceptual breakthrough in mitigating air pollution without additional energy consumption, and pave the way for the next-generation climate control devices with built-in air purification capabilities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences physical sciences astronomy planetary sciences planetary geology
- engineering and technology environmental engineering air pollution engineering
- natural sciences earth and related environmental sciences environmental sciences pollution
- natural sciences physical sciences optics microscopy confocal microscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.