Description du projet
Comprendre les secrets de la matière noire présente dans les amas de galaxies grâce aux lentilles gravitationnelles
Les amas de galaxies sont les plus grandes structures observables dans l’Univers, et peuvent contenir des centaines, voire des milliers de galaxies. Le gros de la masse d’un amas de galaxies, et ce qui assure sa cohésion par gravitation, ne provient pas des étoiles mais de la matière noire. Le projet MARACHAS, financé par l’UE, se servira de l’effet de lentille gravitationnelle pour répondre à des questions fondamentales sur l’évolution des composants de la matière noire qui constituent la majeure partie des amas de galaxies. Cet effet permettra notamment d’étudier comment les sous-halos, un sous-ensemble de halos de matière noire qui s’étendent bien au-delà de la limite des composants visibles des galaxies, perdent de la masse au cours de leur évolution au sein de ces amas.
Objectif
Structure in our universe grow hierarchically, where small structures (stars and galaxies) assemble first and later on galaxies group together in large potential wells to form clusters. Clusters of galaxies are the largest structure observable in our Universe, and can contain more than hundreds of galaxies. Nonetheless, the stars in the galaxies contribute to only a little of its mass. Indeed, the main matter component is dark matter. Little is known about dark matter besides that it interacts through gravity with ordinary matter. For instance, we believe that every galaxy carry their own small halo of dark matter, and when they fall in a cluster part of that halo is stripped and diffused in the larger halo of the cluster.
In this study, I will be using the gravitational lensing effect to answer questions on the evolution of dark matter components that make the majority of clusters. In my case, gravitational lensing refers to the bending of the light emitted by a galaxy located far behind the cluster, due to the mass of the cluster itself. I will study the galaxies and their dark matter falling in the cluster and losing their dark matter to the profit of the cluster, also called the sub-halos mass loss. This will bring new insights to the overall structure evolution in our Universe, and answer fundamental questions about dark matter properties.
Based on my experience gained during my PhD and postdoc at the University of Michigan, returning to the EU to conduct this study will allow me to increase my ability to design, program and develop large analyses of observational data. The experienced contributors will greatly promote such challenging observational analysis and have the expertise to link this work to the latest theoretical predictions thanks to Durham’s state-of-the-art cosmological simulations. This will broaden my skills, giving me an (important) opportunity to work with theorists.
Champ scientifique (EuroSciVoc)
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classe les projets avec EuroSciVoc, une taxonomie multilingue des domaines scientifiques, grâce à un processus semi-automatique basé sur des techniques TLN. Voir: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
Vous devez vous identifier ou vous inscrire pour utiliser cette fonction
Programme(s)
Appel à propositions
(s’ouvre dans une nouvelle fenêtre) H2020-MSCA-IF-2019
Voir d’autres projets de cet appelRégime de financement
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)Coordinateur
DH1 3LE Durham
Royaume-Uni