Project description
Accurate gravitational wave models could shed new light on compact binary systems
The detection of gravitational waves generated by the merger of neutron stars and black holes marked a new era in gravitational astronomy. Detailed analyses of the signal waveforms require accurate models. The EU-funded GWASTRO project plans to develop surrogate models that emulate prohibitively expensive simulations. These models are trained based on simulation datasets and could thus rival the accuracy of the simulations themselves. Accurate models of gravitational wave signals will help computational cosmologists and astronomers probe the physics of compact binary systems and maximise the scientific output of the multi-billion LIGO and Virgo experiments.
Objective
The era of gravitational wave astronomy has begun and has the potential to redefine our knowledge of the Universe. LIGO and Virgo are the most precise instruments ever built, but this is only the beginning for this field. The detectors are becoming ever more sensitive, and the next generation of detectors are already being planned. Coupled with these trailblazing experimental efforts, the promise of gravitational wave astronomy can only be fully realized if our models can keep up with the accuracy demands of the imminent high-precision era.
LIGO and Virgo hunt for gravitational waves from orbiting black holes and neutron stars; these compact objects lose energy through gravitational waves, spiral in towards each other and eventually merge. To analyze the data from the detections, it is crucial to have an accurate model of the expected gravitational waves. The merger process is highly dynamical and numerical simulations involving the Einstein equations are the only means to predict the gravitational waves from the merger. However, these simulations are too expensive for direct data analysis applications, each taking a month on a supercomputer. Therefore, fast but approximate waveform models that are calibrated against these simulations have been developed over the years, but these models do not currently capture all of the physics present in the simulations.
Surrogate models take a data-driven approach to modeling, and are trained directly against numerical simulations without the need for additional assumptions. As a result, these models can even rival the simulations themselves in accuracy. In this project, I will develop novel surrogate models that capture the full physics of compact binary systems. Therefore, this project will ensure that our gravitational wave models are ready to maximize the science output of the multi-billion-Euro experimental efforts and realize the great promise of gravitational wave astronomy.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences computer and information sciences data science
- natural sciences physical sciences astronomy observational astronomy gravitational waves
- natural sciences physical sciences astronomy stellar astronomy neutron stars
- natural sciences physical sciences astronomy astrophysics black holes
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware supercomputers
You need to log in or register to use this function
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
80539 MUNCHEN
Germany
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.