Project description
Novel cathode materials for high-voltage, high-energy-density sodium–ion batteries
Sodium–ion batteries (SIBs) are a promising candidate for potential electric storage in grid applications. However, their commercialisation is prevented due to the lack of cathodes with high-output voltage that deliver high-energy density. To deal with these drawbacks, the EU-funded Mixed Anion Cathodes project aims to design a new class of mixed anion compounds called vanadium oxyfluorides that will deliver high specific capacities at higher operating voltage (≥ 3 V). The novel cathode materials will be synthesised through partial fluorination using non-hazardous organic reagents and one-pot microwave-assisted methods. The project’s cathodes will be used to fabricate high-energy-density SIBs for efficient grid storage.
Objective
Sodium-ion batteries (SIBs) are being developed and explored as potential electric storage for the grid applications due to infinite resources for sodium at cheaper price. The major impediment for its commercialization is unavailability of cathodes that possesses high output voltage and delivers high energy density. The state-of-art SIB positive electrodes consist of cathodes with the highest output potential (≤ 3.5 V) exhibiting lower specific capacities (150 mAh/g) while V2O5 cathodes delivered high specific capacity (225 mA/g) at low potential (2.5 V). Therefore, it will beneficial to design cathodes with high output voltage and capacity to build high energy density SIBs.
In this project, the above drawbacks are mitigated by designing a new class of mixed anion compounds, vanadium oxyfluorides as novel cathode materials which are expected to deliver high specific capacities at higher operating voltage (≥ 3 V). These compounds are synthesized by partial fluorination using a non-hazardous organic reagents and novel one-pot microwave assisted methods. The as-prepared materials are characterized to identify their chemical compositions and crystallography using TEM, neutron and synchrotron diffraction techniques. These cathodes are subjected to electrochemical testing in a typical CR2032 coin cells. The solid state NMR is used to study the local structure and Na+ mobility inside cathode host while in-situ XPS provides insight into change in electrode composition at various stages of cycling. The electrochemical pulsed technique and impedance spectroscopy are used to determine diffusion coefficient of Na+ and electrochemical mechanism. The optimized materials will be further tested in a pouch cells resembling a real device. Therefore, this project elucidates the designing of a new class of mixed anions cathodes with high output voltage (≥ 3 V) and deliver high specific capacity (225 mAh/g) for fabricating high energy density SIBs (675 Wh/kg) for efficient grid storage.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- natural sciences chemical sciences inorganic chemistry alkali metals
- natural sciences earth and related environmental sciences geology mineralogy crystallography
- natural sciences chemical sciences inorganic chemistry transition metals
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.3. - EXCELLENT SCIENCE - Marie Skłodowska-Curie Actions
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.3.2. - Nurturing excellence by means of cross-border and cross-sector mobility
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
MSCA-IF - Marie Skłodowska-Curie Individual Fellowships (IF)
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-MSCA-IF-2019
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
28040 Madrid
Spain
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.