Project description
Immunomodulatory metabolites in biomaterials
Biomaterials are crucial for the surgical correction of bone defects caused by diseases and traumatic fractures. Risks associated with this treatment include inflammation and bone infection, and the host immune response to implanted materials represents the main factor determining the long-term outcome of the treatment. Bioactive metabolites have emerged as one of the most innovative and potent approaches for immune response modulation. The incorporation of metabolites with immune regulatory properties is an especially attractive option for biomaterials, ensuring a site-specific delivery system and the modulation of the microenvironment. The goal of the EU-funded Met4Bone project is to develop novel biomaterials with incorporated metabolites as an effective strategy to modulate local immune response, leading to favourable outcomes of surgical bone remediation.
Objective
The biomaterials are crucial for the surgical remediation of bone defects caused by various diseases e.g. osteoporosis and traumatic fractures. However, there are several risks associated with this treatment; first, the surgical procedure itself carries a potential risk of inflammation and bone infection, second, the bone replacement can fail requiring revision surgery. In fact, the host immune response to implanted materials and devices is the main factor that will determine a long-term functional outcome of the biomaterial mediated treatment. Therefore, the bone biomaterial ability to modulate the local immune environment for favorable treatment outcomes has to be considered. The usage of bioactive metabolites has emerged as one of the most novel and potent approach for immune response modulation. The incorporation of metabolites with immune regulatory properties seems an especially attractive option for biomaterials as it would ensure site-specific delivery system and allow modulation of the microenvironment. The goal of this project is to develop novel biomaterials with incorporated metabolites as a potentially effective and safe strategy to modulate local immune response towards favorable outcomes of surgical bone remediation. To achieve it, the recent concept of metabolomics with the state of the art biomaterial design and research will be combined in this project. This proposal includes the transfer of knowledge to the host institution and the training of the researcher in new techniques and skills. The multidisciplinary nature of the project is strong, combining materials science, biochemistry, and molecular biology. Results have the potential to pave the way for novel biomaterials significantly improving clinical outcomes for patients suffering from bone injuries.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciencesbiological sciencesbiochemistry
- medical and health sciencesbasic medicineimmunology
- medical and health sciencesclinical medicinesurgerysurgical procedures
- engineering and technologyindustrial biotechnologybiomaterials
- natural sciencesbiological sciencesmolecular biology
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Funding Scheme
MSCA-IF-EF-ST - Standard EFCoordinator
1048 Riga
Latvia