Project description
Optical fibre links to cryostats can boost computing power and energy efficiency
All envisaged practical implementations of cryogenic processors, including both quantum computers (QCs) and classical processors based on single flux quantum (SFQ) signals, require massive data transfer from and to classical high performance computers (HPCs). The EU-funded aCryComm project aims to develop building blocks for cryogenic photonics interconnects and eventually enable this challenging data transfer. The long-term goal is the development of an open-access platform to integrate classical optical interfaces based on low-loss silicon photonics, plasmonics, and nano light sources together with superconducting photonic and electronic devices, including SFQ-based co-processors for HPCs and for QCs.
Objective
The end of Moore’s law has led to unsustainable growth in data centre and high-performance computing (HPC) power consumption. Within the post-CMOS technologies addressing this energy crisis, those based on superconductivity are among the most promising ones. Superconducting classical computing based on single flux quantum (SFQ) pulses is a technology enabling clock speeds exceeding 100 GHz, at extreme power efficiency. Rather than compete with CMOS head on, our vision is that SFQ cores should act as coprocessors in existing HPC architectures, much like GPUs do today. Superconducting circuits are also a leading candidate for implementations of quantum computing (QC), which promises to solve certain classically intractable problems. There, SFQ logic offers a natural solution for tight integration of the signal processing required for control and readout of large-scale error-corrected superconducting quantum processors. In both HPC and QC, expanding to large scale is essential for practical impact, and thus, high-bandwidth data transfer to the cryogenic coprocessor is a key bottleneck. In aCryComm we combine top-level European expertise in HPC, superconducting electronics, quantum computing, and photonics to create an optical data bus between conventional HPC and cryogenic SFQ circuits. We expect the optical data link to outperform conventional electrical connections in bandwidth, energy consumption, thermal loading, and physical footprint. To this end, we will develop opto-electric and electro-optic interfaces, culminating in demonstrators that quantitatively characterize the data bus performance. Thanks to the inter-disciplinary composition of the consortium, we are also able to produce and promote a plan for the long-term exploitation of the cryogenic data bus in HPC and QC. We also suggest paths to commercializing our technologies, taking advantage of the unique possibility the consortium offers for transferring R&D to production in the same European facilities.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology electrical engineering, electronic engineering, information engineering electronic engineering computer hardware quantum computers
- natural sciences physical sciences electromagnetism and electronics superconductivity
- social sciences law
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.2. - EXCELLENT SCIENCE - Future and Emerging Technologies (FET)
MAIN PROGRAMME
See all projects funded under this programme -
H2020-EU.1.2.1. - FET Open
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
RIA - Research and Innovation action
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) H2020-FETOPEN-2018-2020
See all projects funded under this callCoordinator
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
02150 Espoo
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.