Skip to main content
European Commission logo
italiano italiano
CORDIS - Risultati della ricerca dell’UE
CORDIS

attojoule Cryogenic Communication

Descrizione del progetto

I collegamenti in fibra ottica ai criostati possono aumentare la potenza di calcolo e l’efficienza energetica

Tutte le implementazioni pratiche di processori criogenici previste, inclusi sia i computer quantistici sia i processori classici basati su segnali quantistici a flusso singolo, richiedono un enorme trasferimento di dati da e verso i classici computer ad alte prestazioni. Il progetto aCryComm, finanziato dall’UE, mira a sviluppare elementi costitutivi per le interconnessioni fotoniche criogeniche e in definitiva a consentire questo impegnativo trasferimento di dati. L’obiettivo a lungo termine è lo sviluppo di una piattaforma ad accesso aperto per integrare interfacce ottiche classiche basate sulla fotonica del silicio a bassa perdita, plasmonica e nano-sorgenti luminose a dispositivi superconduttori fotonici ed elettronici, inclusi i co-processori basati su segnali quantistici a flusso singolo per computer ad alte prestazioni e computer quantistici.

Obiettivo

The end of Moore’s law has led to unsustainable growth in data centre and high-performance computing (HPC) power consumption. Within the post-CMOS technologies addressing this energy crisis, those based on superconductivity are among the most promising ones. Superconducting classical computing based on single flux quantum (SFQ) pulses is a technology enabling clock speeds exceeding 100 GHz, at extreme power efficiency. Rather than compete with CMOS head on, our vision is that SFQ cores should act as coprocessors in existing HPC architectures, much like GPUs do today. Superconducting circuits are also a leading candidate for implementations of quantum computing (QC), which promises to solve certain classically intractable problems. There, SFQ logic offers a natural solution for tight integration of the signal processing required for control and readout of large-scale error-corrected superconducting quantum processors. In both HPC and QC, expanding to large scale is essential for practical impact, and thus, high-bandwidth data transfer to the cryogenic coprocessor is a key bottleneck. In aCryComm we combine top-level European expertise in HPC, superconducting electronics, quantum computing, and photonics to create an optical data bus between conventional HPC and cryogenic SFQ circuits. We expect the optical data link to outperform conventional electrical connections in bandwidth, energy consumption, thermal loading, and physical footprint. To this end, we will develop opto-electric and electro-optic interfaces, culminating in demonstrators that quantitatively characterize the data bus performance. Thanks to the inter-disciplinary composition of the consortium, we are also able to produce and promote a plan for the long-term exploitation of the cryogenic data bus in HPC and QC. We also suggest paths to commercializing our technologies, taking advantage of the unique possibility the consortium offers for transferring R&D to production in the same European facilities.

Parole chiave

Invito a presentare proposte

H2020-FETOPEN-2018-2020

Vedi altri progetti per questo bando

Bando secondario

H2020-FETOPEN-2018-2019-2020-01

Meccanismo di finanziamento

RIA - Research and Innovation action

Coordinatore

TEKNOLOGIAN TUTKIMUSKESKUS VTT OY
Contribution nette de l'UE
€ 874 460,00
Indirizzo
TEKNIIKANTIE 21
02150 Espoo
Finlandia

Mostra sulla mappa

Regione
Manner-Suomi Helsinki-Uusimaa Helsinki-Uusimaa
Tipo di attività
Research Organisations
Collegamenti
Costo totale
€ 874 460,00

Partecipanti (6)