Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Multiscale Dynamics with Ultrafast High-Resolution Relaxometry

Project description

Investigating condensed matter systems on multiple timescales

The functions of almost every single product conceived and produced rely on the properties of individual molecules and condensed matter. Understanding and improving the properties of condensed matter require determining both the structure and dynamics with atomic resolution over a very broad range of timescales. The EU-funded HIRES-MULTIDYN project will introduce a ground-breaking technology, called ultrafast high-resolution relaxometry (UHRR), to determine the dynamics of complex systems on timescales ranging from picoseconds up to microseconds. Researchers will build and test proof-of-concept prototypes of UHRR instruments. They will also develop the theoretical framework to understand the unprecedented measurements obtained by UHRR and interpret them in terms of molecular motions. The UHRR prototypes could find applications in a broad range of fields, such as drug design, food, health and energy.

Objective

The properties of individual molecules and condensed matter are at the origin of the functions of almost every single product conceived, produced or analysed. Understanding and improving the properties of condensed matter requires the determination of both structure and dynamics with atomic resolution over a very broad range of timescales. No technique is available today to determine dynamics from picoseconds up to microseconds of complex systems in liquids with atomic resolution. The HIRES-MULTIDYN project introduces a ground-breaking technology: ultrafast high-resolution relaxometry (UHRR), which synergizes the high-resolution power of high-field nuclear magnetic resonance with multiscale dynamics low-field relaxation based on a new concept for critical fast-field switching. We will design, build, and test the first two proof-of-concept prototypes of UHRR instruments. We will develop the theoretical framework to understand the unprecedented measurements obtained by UHRR and interpret them in terms of molecular motions. We will exploit UHRR prototypes in a series of proof-of-concept applications covering a broad range of fields (drug design, food and health sciences, energy). These applications will demonstrate the unprecedented analytical power of UHRR and generate the momentum required to lead to the future development of a commercial UHRR system built in Europe. The HIRES-MULTIDYN project brings together a tight and complementary consortium of engineers, experimental scientists and theoreticians who are world leaders in NMR methods development, instrumentation, applications and in the theoretical foundations of magnetic relaxation and molecular dynamics simulations. Our ambition is to develop UHRR as a novel technology to determine the dynamic properties of condensed matter that will, within the next decade, boost the ability of scientists to innovate in academia and several industries (from pharma to food, energy and beyond) and enhance public health.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

RIA - Research and Innovation action

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) H2020-FETOPEN-2018-2020

See all projects funded under this call

Coordinator

ECOLE NORMALE SUPERIEURE
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 623 568,98
Address
45, RUE D'ULM
75230 Paris
France

See on map

Region
Ile-de-France Ile-de-France Paris
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 874 779,99

Participants (7)

My booklet 0 0