Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS
Content archived on 2024-06-18

Mathematical models for diffusion controlled systems: diffusion on cell membrane, cluster formation and maintenance

Objective

Assembly of transient and stable signaling platforms in the plasma membrane of cells has been implicated in functions as varied as death and survival, polarity, differentiation, migration, cell-cell communication, virus entry, exocytosis, endocytosis. Naturally, the assembly of signaling microdomains requires the use of most complex molecular mechanisms capable of transducing intrinsic or extrinsic information into the actual making of the domain. Consensus exist that the lateral diffusion and heterogeneity of membrane proteins is absolutely necessary. However, more and more data indicate that the clustering of specific proteins to form a signaling platform involves as well the free lateral diffusion of stable assemblies of sphingoipids and cholesterol (rafts). Despite their fundamental relevance for cell function, the basic events responsible for the formation and dynamics of membrane microdomains is not well understood. Mathematical models are very useful tools for describing diffusion processes in an inhomogeneous medium with some anomalies as well as self-organized systems. Hence, it is my plan to use mathematical models to study the formation of protein-lipid clusters and how normal diffusion on an inhomogeneous membrane can be modified. The formation of protein clusters is a necessary condition for cell polarity and it could be related with the generation of pattern. I will propose a Turing-mechanism model to know if it is possible to generate stable spatial inhomogeneity on the cell surface. In order to formulate the equations it will be needed to make some assumptions about the biological system. Made assumptions will be refused or accepted according to the comparative analysis between theoretical results and experimental data. My background in physics make me feel suitable for undertaking the task of modelling these features. The validation experiments will be performed in the laboratory of Prof. Carlos Dotti where I have chosen to carry out this project.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

FP7-PEOPLE-2009-IIF
See other projects for this call

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

MC-IIFR - International incoming fellowships (Return phase)

Coordinator

UNIVERSIDAD NACIONAL DE CORDOBA
EU contribution
€ 15 000,00
Address
Haya de la Torre s/n Ciudad Universitaria
5000 Cordoba
Argentina

See on map

Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

No data
My booklet 0 0