Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Reconstructing the Effect of Sulfide Respiration on Global Redox State: Insights from Experiments, Observations, and Models

Project description

Round and round it goes: mineral oxidation and the Earth's redox cycle

Characterising the flux of carbon dioxide (CO2) and oxygen (O2) in our atmosphere and bodies of water over short and long time scales is vital to understanding the evolution of our planet, its climate and life forms on it. The cycles of these are tied to many different sources and sinks, among the least understood being oxidative weathering of sulphide minerals such as pyrite. Oxidative weathering of sulphides both removes O2 from the atmosphere and acts as a source of CO2. The EU-funded RESpiReS project is characterising this flux now and in our distant past and will also let us know if we can use it as a proxy for atmospheric compositions of O2 and CO2 over time. The resulting models of pyrite oxidation flux and atmospheric fluxes will fill important gaps in our current knowledge of global redox cycles.

Objective

To comprehensively reconstruct the evolution of Earth's climate, atmospheric and seawater chemical compositions, and conditions that favor the proliferation of life, it is critical to constrain all atmospheric carbon dioxide (CO2) and oxygen (O2) sources and sinks—including their dependencies on underlying environmental and geologic drivers. One major CO2 source and O2 sink remains poorly understood: oxidative weathering of sulfide minerals (e.g. pyrite) on land. In addition to driving Earth's atmospheric composition, pyrite oxidation potentially provides a quantitative proxy for recording past O2 and CO2 levels: the triple-oxygen isotope composition of sulfate. Still, three key questions remain unanswered: (i) what sets the modern-day pyrite oxidation flux, (ii) how has this flux changed over million- to hundred-million-year timescales, and (iii) do geologically preserved sulfate isotopes faithfully record past atmospheric conditions?
Here, I outline a multifaceted research program to answer these questions. This research will develop and apply novel experiments and state-of-the-art geochemical tracers to mechanistically understand pyrite oxidation and resulting sulfate isotope signatures. These results will inform theoretical, kinetic, and numerical models to quantify pyrite oxidation fluxes and atmospheric compositions throughout Earth's history—this combination of techniques is uniquely afforded by my background and expertise. Specifically, this research will: (i) constrain the electrochemical mechanism of pyrite oxidation and its isotopic consequences, (ii) assess which environmental and geologic controlling factors govern pyrite oxidation rates and fluxes, and (iii) determine how secondary redox cycling in the environment overprints sulfate isotope signatures.
An ERC Starting Grant will enable me to access the outstanding human resources and scientific infrastructure available at ETH Zürich in order to address this major open questions in modern geochemistry.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-STG

See all projects funded under this call

Host institution

EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 2 460 062,00
Address
Raemistrasse 101
8092 Zuerich
Switzerland

See on map

Region
Schweiz/Suisse/Svizzera Zürich Zürich
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 2 460 062,00

Beneficiaries (1)

My booklet 0 0