European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE
CORDIS

Harnessing solid-state thermal cycling to Guide microstructure evolution of Additively Manufactured Metallic Alloys

Descripción del proyecto

Control del proceso de impresión 3D para imprimir piezas de aleación optimizadas

La fabricación por adición (FA), o impresión 3D, tiene un enorme potencial para revolucionar el sector de la fabricación de aleaciones. Sin embargo, el principal obstáculo que impide su adopción generalizada es la incapacidad de diseñar piezas de aleación con microestructuras que presenten las propiedades y el rendimiento deseados. Para diseñar este tipo de piezas es necesario comprender y controlar a fondo los micromecanismos que determinan la microestructura final de la pieza. En el proyecto GAMMA, financiado con fondos europeos, el objetivo es comprender el papel crucial —y aún poco estudiado— de los micromecanismos impulsados por los ciclos térmicos en estado sólido durante la FA en la formación de la microestructura final. El proyecto también utilizará estos conocimientos para generar piezas impresas en 3D con el rendimiento deseado. A fin de lograr estos objetivos, se desarrollarán y utilizarán de forma sinérgica nuevos dispositivos experimentales y modelos computacionales.

Objetivo

Additive manufacturing (AM) holds the potential to revolutionize the alloy manufacturing sector through its ability to provide unprecedented control over the design of alloy microstructures during manufacturing. However, the main roadblock preventing its widespread adoption is the inability to design microstructures with desired mechanical responses. An AM process results in the formation of hierarchical microstructures that are extremely sensitive to the process parameters. Minor changes to these parameters can result in very different microstructures that exhibit significant differences in their mechanical response at multiple length scales. Controlling the mechanical response of hierarchical microstructures requires first understanding their formation during the AM process. Current experimental and modeling research efforts are heavily focused on studying the role of melt-pool dynamics and rapid solidification during the AM process.
This project aims at tackling the crucial missing link, which is the microstructure evolution occurring during the long period after solidification and till the end of an AM process, i.e. during Solid-State Thermal Cycling (SSTC), at varying temperature rates and amplitudes. Using novel experimental procedures involving electron microscopy and x-ray synchrotron studies, I will quantify microstructural changes and identify micro-mechanisms caused by SSTC. This will be complemented with development of novel models at intragranular and polycrystalline levels to gain a comprehensive understanding of the role of transient thermal gradients on microstructure evolution. The experiment-modeling synergy will then be harnessed to tailor AM process parameters and suggest in-process/post-process routes to engineer AM microstructures. The approaches developed and the knowledge gained from this project will have far reaching benefits including, but not limited to, guiding emerging solid-state AM technologies such as additive friction stir.

Palabras clave

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

ECOLE POLYTECHNIQUE
Aportación neta de la UEn
€ 1 499 877,00
Dirección
ROUTE DE SACLAY
91128 Palaiseau Cedex
Francia

Ver en el mapa

Región
Ile-de-France Ile-de-France Essonne
Tipo de actividad
Higher or Secondary Education Establishments
Enlaces
Coste total
€ 1 499 877,00

Beneficiarios (1)