Objective
Half of known exoplanets orbit close to their star, featuring a desert of hot Neptunes whose origins remain uncertain. These planets may have lost their gas atmosphere, eroding into the dust-rich rocky planets found below the desert. Testing this scenario requires deriving accurate mass losses, but a lack of observational tracers prevented us from validating and refining models of escaping atmospheres. The coupling of atmospheric evolution with orbital migration, which can bring planets close to their star in various ways and delay their erosion, also remains to be explored.
My work on infrared spectroscopy recently opened a new window into atmospheric escape, complementing traditional ultraviolet observations. I further brought to light an interplay between escape and migration by discovering that two warm Neptunes survive on the edge of the desert despite strong mass loss. I showed from one of these planets' orbital architecture that it migrated recently, triggering its erosion. These breakthroughs highlight the way to determine the origin of the desert:
1) Gathering UV/IR spectra (gas) and Vis/IR photometry (dust) for a representative sample of planets around the desert
2) Developing a self-consistent model of escaping atmosphere, validated by observations, which accounts for dust and gas physics. Interpreting data from 1) with this cutting-edge model will yield accurate mass loss for both gaseous and rocky planets
3) Measuring the sample orbital architectures, and combining them with mass losses for the first time to constrain population syntheses coupling long-term orbital and atmospheric evolution.
This ambitious approach, exploiting advanced modeling informed by the most relevant tracers, will unveil the evolutionary tracks of exoplanets and bring insights into their nature. Challenges lie in developing a versatile atmospheric model and acquiring a sufficient sample. We will build upon existing codes, and exploit surveys led by the PI and his collaborators
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: https://op.europa.eu/en/web/eu-vocabularies/euroscivoc.
- natural sciences physical sciences astronomy planetary sciences planets exoplanetology
- natural sciences physical sciences optics spectroscopy
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
1211 Geneve
Switzerland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.