Project description
Quantum particles could be the key to greener white light for all
The development of white light-emitting diodes (LEDs) and their use as a replacement for conventional lighting put these inorganic LEDs virtually everywhere. Famous for their luminescence and low power consumption, they are also increasingly in the spotlight for their use of rare earth and toxic heavy metals. Organic LEDs (OLEDs), whose luminescent layer is made of carbon-based (organic) molecular semiconductors rather than crystalline inorganic semiconductors, are emerging as a promising alternative, but they have about half the lifetime of inorganic LEDs and less luminance. The EU-funded PLAS-OLED project plans to use high-tech disruptive methods to convert monochromatic OLEDs into white OLEDs that compete with the best of their inorganic counterparts.
Objective
The global lighting market consumes 20 % of total electric power generated, producing an enormous 400 million metric tons of CO2 annually. The need for more efficient light sources has driven the blossoming of light-emitting diode (LED) research and technology. However, inorganic LEDs for solid-state lighting contain rare earth and toxic heavy metal traces that have negative environmental impacts. Recently, organic LEDs (OLEDs) have been introduced as promising general lighting sources. Unlike LEDs, OLEDs can be fabricated using energy-efficient processes and ecological materials. Therefore, the hazards of LEDs can be addressed by shifting to OLED lighting. Currently, the best OLED lamps are limited to 50 lm/W and lifetimes of around 5000 hours. To convince the market to embrace OLED for general lighting, white OLEDs (WOLEDs) need to reach the luminous efficacy and luminance of inorganic white LEDs (100 lm/W, 10000 hours lifespan).
In the PLAS-OLED project, to address this need, I propose the fabrication of a novel WOLED architecture. The new idea here is the conversion of monochromatic OLEDs into WOLEDs with polariton modes. Polariton modes are exciton-dressed degenerate states, meaning that polaritons can be utilized to convert a single-color emitting exciton (e.g. green color) to multi-color emission (e.g. blue and red). Moreover, polaritons states have been reported to accelerate emission rates in organic semiconductors, and to induce reverse intersystem crossing (RISC) for harvesting non-radiative triplet excitons or converting slow phosphorescence to fast fluorescence. Thus, polaritons can also increase the luminous efficacy and luminance of WOLEDs. By conducting comprehensive photoluminescence and electroluminescence experiments, I aim to demonstrate that polaritonics is a disruptive technology for converting monochromatic OLED into inexpensive, efficient, stable, and bright WOLEDs.
Fields of science (EuroSciVoc)
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.
- engineering and technology materials engineering colors
- natural sciences physical sciences electromagnetism and electronics semiconductivity
You need to log in or register to use this function
We are sorry... an unexpected error occurred during execution.
You need to be authenticated. Your session might have expired.
Thank you for your feedback. You will soon receive an email to confirm the submission. If you have selected to be notified about the reporting status, you will also be contacted when the reporting status will change.
Keywords
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)
- strong light-matter interactions for manipulating electronically excited states in organic semiconductors
- organic semiconductor polaritons
- organic light-emitting diodes
- OLEDs
- reverse intersystem crossing (RISC)
- thermally activated delayed fluorescence
- TADF
- harvesting triplets with polaritons
- microcavities
- strong light-matter interactions
- electrical injection in organic semiconductors
Programme(s)
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
Multi-annual funding programmes that define the EU’s priorities for research and innovation.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
MAIN PROGRAMME
See all projects funded under this programme
Topic(s)
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.
Funding Scheme
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.
ERC-STG - Starting Grant
See all projects funded under this funding scheme
Call for proposal
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.
(opens in new window) ERC-2020-STG
See all projects funded under this callHost institution
Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.
20014 Turku
Finland
The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.