Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Taming the reaction dynamics of paramagnetic species

Project description

A radical setup opens the door to experimental tests of behaviours only predicted to date

Critical to the scientific method is the ability to control experimental variables in a repeatable and reliable way so that you can clearly determine the parameters affecting your measured variable. Imagine if you could not even begin to consider these parameters because you had no reliable way to 'create' the phenomenon you wanted to study in the first place. This has been the case when it comes to the study of gas-phase radical reactions. The EU-funded RadiCool project is developing a technique to reliably generate a pure beam of radicals with tuneable properties. The resulting experimental paradigm will open the door to significantly enhanced understanding of reaction dynamics and increased accuracy of models for which the underlying theories cannot easily be tested currently.

Objective

Radicals are paramagnetic species – atoms or molecules with an unpaired electron – and they are prevalent in gas-phase environments such as the atmosphere, combustion systems and the interstellar medium. In spite of their real-world importance, very few experimental methods can be applied to the precise study of gas-phase radical reactions. This is primarily due to the significant challenges associated with such studies; there are no established methods for generating a pure beam of atomic or molecular gas-phase radicals with tuneable properties. In this proposal, I provide a solution. I will develop a versatile and innovative “magnetic guide”, for the generation of a pure and state-selected beam of radicals. The magnetic guide will feature a series of specially-designed permanent magnets (Halbach arrays) and skimming blades. It will act as a stand-alone device, producing a pure beam of radicals with continuously tuneable velocity from an effusive mixture (containing radicals, precursor molecules and seed gases). The magnetic guide will be combined with two existing experiments – an ion trap and a liquid-surface set-up – and will enable us to study ion-radical and radical-liquid surface interactions with unprecedented control and precision. We will examine important gas-phase reactions involving radicals in isolation (i.e. without competing side reactions) for the first time. Our measurements will provide the missing experimental data needed to improve the accuracy of (for example) complex atmospheric chemistry models – replacing untested predictions from capture theory calculations.

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-STG

See all projects funded under this call

Host institution

THE UNIVERSITY OF LIVERPOOL
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 850 888,69
Address
BROWNLOW HILL 765 FOUNDATION BUILDING
L69 7ZX LIVERPOOL
United Kingdom

See on map

Region
North West (England) Merseyside Liverpool
Activity type
Higher or Secondary Education Establishments
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 850 888,69

Beneficiaries (2)

My booklet 0 0