Skip to main content

Artificial intelligence design of molecular nano-magnets and molecular qubits

Objective

As technologies based on semiconductors and ferromagnets are reaching their limits in computational and memory-storage capabilities, new technologies based on spin are emerging as alternative. Magnetic molecules represent the ultimate small-scale magnetic unit that can be synthesized and processed into a device for spintronics and quantum computing applications but their use is confined to very low temperatures. The grand challenge of this proposal is to design magnetic molecules with long spin lifetime at ambient temperature by tuning the main microscopic interaction responsible for spin relaxation: the spin-phonon coupling. AI-DEMON will address this challenge by developing a novel first-principles and machine-learning computational framework able to cover all the essential aspects of the design of new coordination compounds with tailored properties. AI-DEMON has three main objectives, each one representing a major contribution to the field: i) I will unveil the mechanism of spin-phonon relaxation in magnetic molecules by developing a quantitative first-principles spin relaxation theory, ii) I will efficiently explore the chemical space of magnetic coordination compounds by developing a universal machine-learning model able to predict vibrational and magnetic properties, and iii) I will design molecular prototypes with tailored magnetic and vibrational properties by developing generative machine-learning methods. Preliminary results on spin relaxation theory and machine-learning applied to magnetic properties show great promise and set the cornerstone of the project. The use of novel methodologies, such as machine learning and first-principles spin dynamics, represent a strong disruption in the current approach to theoretical modelling and discovery of new magnetic molecules and will propel the field into a new and modern era. Significant impact beyond the field of molecular magnetism, e.g. bio-inorganic chemistry and solid-state qubits, can also be anticipated.

Field of science

  • /natural sciences/computer and information sciences/artificial intelligence
  • /engineering and technology/electrical engineering, electronic engineering, information engineering/electronic engineering/computer hardware/quantum computer

Call for proposal

ERC-2020-STG
See other projects for this call

Funding Scheme

ERC-STG - Starting Grant

Host institution

THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Address
College Green
2 Dublin
Ireland
Activity type
Higher or Secondary Education Establishments
EU contribution
€ 1 499 786

Beneficiaries (1)

THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN
Ireland
EU contribution
€ 1 499 786
Address
College Green
2 Dublin
Activity type
Higher or Secondary Education Establishments