European Commission logo
español español
CORDIS - Resultados de investigaciones de la UE

Imprints of Magnetic fields in Exoplanets

Descripción del proyecto

Unos modelos de campos magnéticos exoplanetarios buscan gigantes brillantes y mundos habitables

Todos los planetas de nuestro sistema solar, salvo Venus y Marte, tienen campo magnético, cada cual con características peculiares. Es un aspecto bastante destacado que refleja la extraordinaria variedad de la estructura interna de nuestros planetas vecinos. Además de protegernos de las partículas solares cargadas y de ayudarnos a navegar, nuestro campo magnético podría haber desempeñado un papel importante en la evolución de la vida en la Tierra, reteniendo los océanos y la atmósfera. En el proyecto IMAGINE, financiado con fondos europeos, se explora la evolución y las huellas de los campos magnéticos exoplanetarios en escalas temporales de miles de millones de años, con el objetivo de ayudarnos a encontrar gigantes gaseosos inflados que brillen en las ondas de radio y mundos rocosos habitables.


The fast-growing sample of thousands of extrasolar planets is unveiling an amazing variety of properties. It represents an opportunity to shed light on long-standing physics and astrobiology issues from a much wider sample than our Solar neighbours, especially for what concerns the still unclear internal structure, only grossly constrained by observable values of mass and/or radii. Planetary magnetism and its long-term evolution is currently understood only partially for the Earth, at a lesser extent for Jupiter and other Solar planets, and is still elusive in exoplanets. The project focuses on magnetic fields as a key factor in shaping habitability and as a messenger of the internal composition and dynamics.
For terrestrial planets, long-lasting, strong enough magnetic fields are arguably a key factor to guarantee habitability, but we are not even sure about how the Earth’s magnetic field has survived for so long. Magnetism leaves other detectable imprints in giant planets. A quest for the first exoplanetary Jupiter-like magnetospheric emission in radio is on-going, but the search needs to be driven by a reliable prediction of the most likely emitters. Magnetic fields can delay the cooling via Ohmic dissipation and could explain the often observed inflated radii in hot Jupiters, but models are still incomplete.
IMAGINE will simulate the long-term (Gyr) evolution of the exoplanetary magnetic fields, coupled with a cooling model, and will assess the relevant imprints on their observables for a broad range of distinctive features mass, composition, irradiation, rotation.
Combining a novel formulation, emission models and advanced numerical techniques partially imported and adapted from the scenario of magnetized neutron stars, on which the PI is expert, IMAGINE will predict values of magnetic fields for different exoplanets, comparing the associated observable properties of gas giants and contributing to identify the best rocky worlds candidates to habitability.

Régimen de financiación

ERC-STG - Starting Grant

Institución de acogida

Aportación neta de la UEn
€ 1 495 046,00
28006 Madrid

Ver en el mapa

Comunidad de Madrid Comunidad de Madrid Madrid
Tipo de actividad
Research Organisations
Coste total
€ 1 495 046,00

Beneficiarios (1)