Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

The Neurobiology of Magnetic Orientation in Mammals

Project description

Uncovering how animals sense Earth’s magnetic field

A number of species on Earth use the planet’s magnetic field for orientation. Although common, this magnetic sensing mechanism – also known as magnetoreception – remains elusive. The EU-funded NeuroMagMa project seeks to reveal the inner workings of magnetoreception by using a groundbreaking new methodology to explain the mystery behind this sensing mechanism. The goal is to reveal regions of the brain responsible for magnetoreception, identify the primary receptor cells and understand how magnetic fields are interpreted into orientation. By using novel observation methods, the project could finally unveil the mystery of magnetoreception and provide valuable insights regarding brain function.

Objective

Many animals use the Earth’s magnetic field for orientation, but the sensory cells and molecular mechanisms of the magnetic sense remain a mystery. I propose to tackle this fundamental problem in sensory biology with a top-down approach that exploits state-of-the-art methodology to unravel the neural circuits underlying magnetic orientation. To take advantage of the knowledge and toolkits available for rodent brains I chose a rodent model organism: Mole-rats, which navigate through a maze of underground tunnels for their entire life in total darkness. Their magnetic sense is well established and they can be bred in the laboratory.

My project has three ambitious aims: (1) the identification of brain regions that process magnetic stimuli, (2) the discovery of the primary receptor cells, and (3) the characterization of magnetic inputs into head direction cells.

Aim 1: Modern tissue clearing techniques allow rendering brains transparent to analyse them in toto. We couple iDISCO brain clearing with the detection of immediate early genes to create a global map of the mole-rat brain regions that process magnetic fields.
Aim 2: We make use of the circuitry discovered in Aim 1 to deduce the locus of the magnetoreceptors. Combining neuronal tracing with high-sensitivity imaging methods to detect of magnetite, we will meticulously search for the magnetoreceptors in peripheral tissues.
Aim 3: We will establish the first single-unit recordings in freely moving mole-rats. How do head direction (HD) cells function in an animal without access to visual landmarks? My hypothesis is that the HD signal in the mole-rat brain encodes magnetic directions. We will test this by recording from brain areas identified in Aim 1 under different magnetic conditions. Can we discover the first mammal magnetic compass neurons?

This project employs a systematic neurobiological approach that will fundamentally advance our understanding of the neuronal substrates of the magnetic sense.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-STG

See all projects funded under this call

Host institution

MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 493 375,00
Address
HOFGARTENSTRASSE 8
80539 MUNCHEN
Germany

See on map

Region
Bayern Oberbayern München, Kreisfreie Stadt
Activity type
Research Organisations
Links
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 493 375,00

Beneficiaries (1)

My booklet 0 0