Skip to main content
Go to the home page of the European Commission (opens in new window)
English English
CORDIS - EU research results
CORDIS

Artificial quantum materials with photons: many-body physics and topology

Project description

Engineering quantum correlations between hybrid light-matter particles

Polaritons are hybrid light-matter particles consisting of a photon coupled to a matter excitation, for example an electronic excitation. Because these types of light-matter particles combine unique properties from both their light and matter components, they are of interest to many fields of basic and applied research. Condensed matter platforms provide an excellent way to study quantum light-matter interactions, and polaritons are an attractive platform. They are created and manipulated using optical cavities (between two mirrors) to manipulate light, and quantum wells to create and confine electronic excitations (in this case excitons in a semiconductor, i.e. electron-hole pairs bound by the Coulomb interaction). The EU-funded ARQADIA project plans to exploit this platform to engineer quantum correlations between polaritons.

Objective

Physical systems featuring strong electronic correlations exhibit fascinating phenomena, as exemplified by high-Tc superconductivity, quantum magnetism or fractional quantum Hall physics. Inspired by these effects, new ideas have emerged to harness strongly correlated phases in artificial quantum materials, and use them as a resource for fundamental science and for quantum technology. Promising approaches for producing quantum devices are found in condensed matter platforms: one can indeed benefit from nanofabrication to engineer systems that are compact, versatile, and which can potentially be integrated in large-scale architectures. The main goal of ARQADIA is to engineer and study quantum correlated and topological phases of light using artificial photonic materials that I will fabricate in a solid-state platform. I will use exciton-polaritons in semiconductor microcavities, which are hybrid quasiparticles resulting from strong coupling between cavity photons and quantum well excitons. Polaritons are particularly attractive since they combine the best of two worlds: (i) through their photon component, they can be confined in microstrucutres and manipulated using optical spectroscopy; (ii) through their matter component, interactions between polaritons can be tuned and reinforced. Moreover, polaritons can be detected through the decay of cavity photons, which means that they naturally implement out-of-equilibrium physics and allow addressing fascinating questions related to the interplay between quantum correlations and dissipation. Within ARQADIA, I will tackle the challenge of engineering quantum correlations between polaritons via a technological breakthrough: I will insert active materials featuring strongly interacting excitons in microcavity lattices. I will use these materials to study out-of-equilibrium strongly correlated phases in vastly different regimes: from 1D to 2D, from weakly to strongly interacting and from topologically trivial to non-trivial.

Fields of science (EuroSciVoc)

CORDIS classifies projects with EuroSciVoc, a multilingual taxonomy of fields of science, through a semi-automatic process based on NLP techniques. See: The European Science Vocabulary.

You need to log in or register to use this function

Keywords

Project’s keywords as indicated by the project coordinator. Not to be confused with the EuroSciVoc taxonomy (Fields of science)

Programme(s)

Multi-annual funding programmes that define the EU’s priorities for research and innovation.

Topic(s)

Calls for proposals are divided into topics. A topic defines a specific subject or area for which applicants can submit proposals. The description of a topic comprises its specific scope and the expected impact of the funded project.

Funding Scheme

Funding scheme (or “Type of Action”) inside a programme with common features. It specifies: the scope of what is funded; the reimbursement rate; specific evaluation criteria to qualify for funding; and the use of simplified forms of costs like lump sums.

ERC-STG - Starting Grant

See all projects funded under this funding scheme

Call for proposal

Procedure for inviting applicants to submit project proposals, with the aim of receiving EU funding.

(opens in new window) ERC-2020-STG

See all projects funded under this call

Host institution

CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Net EU contribution

Net EU financial contribution. The sum of money that the participant receives, deducted by the EU contribution to its linked third party. It considers the distribution of the EU financial contribution between direct beneficiaries of the project and other types of participants, like third-party participants.

€ 1 499 603,00
Total cost

The total costs incurred by this organisation to participate in the project, including direct and indirect costs. This amount is a subset of the overall project budget.

€ 1 499 603,00

Beneficiaries (1)

My booklet 0 0