Descripción del proyecto
Ampliación del aprendizaje por refuerzo teóricamente sólido
El aprendizaje por refuerzo (AR) es un subcampo del aprendizaje automático que se ocupa de cómo los agentes inteligentes interactúan con entornos desconocidos para maximizar sus recompensas. La aplicación potencial de las técnicas de AR en problemas difíciles reales, como el control de vehículos autónomos o las redes de energía inteligentes, ha atraído una atención considerable a este campo. Sin embargo, los algoritmos de AR más avanzados no se pueden aplicar en los dominios más prometedores, en gran parte debido a la falta de garantías formales de rendimiento. El proyecto SCALER, financiado con fondos europeos, pretende abordar este reto adoptando un enfoque basado en principios para desarrollar una nueva generación de algoritmos de AR con una eficiencia y una escalabilidad demostrables. La metodología se basará en la identificación de nuevas propiedades estructurales de los procesos de decisión de Markov a gran escala que permitan un aprendizaje eficiente desde el punto de vista computacional y estadístico.
Objetivo
Reinforcement learning (RL) is an intensely studied subfield of machine learning concerned with sequential decision-making problems where a learning agent interacts with an unknown reactive environment while attempting to maximize its rewards. In recent years, RL methods have gained significant popularity due to being the key technique behind some spectacular breakthroughs of artificial intelligence (AI) research, which renewed interest in applying such techniques to challenging real-world problems like control of autonomous vehicles or smart energy grids. While the RL framework is clearly suitable to address such problems, the applicability of the current generation of RL algorithms is limited by a lack of formal performance guarantees and a very low sample efficiency. This project proposes to address this problem and advance the state of the art in RL by developing a new generation of provably efficient and scalable algorithms. Our approach is based on identifying various structural assumptions for Markov decision processes (MDPs, the main modeling tool used in RL) that enable computationally and statistically efficient learning. Specifically, we will focus on MDP structures induced by various approximation schemes including value-function approximation and relaxations of the linear-program formulation of optimal control in MDPs. Based on this view, we aim to develop a variety of new tools for designing and analyzing RL algorithms, and achieve a deep understanding of fundamental performance limits in structured MDPs. While our main focus will be on rigorous theoretical analysis of algorithms, most of our objectives are inspired by practical concerns, particularly by the question of scalability. As a result, we expect that our proposed research will have significant impact on both the theory and practice of reinforcement learning, bringing RL methods significantly closer to practical applicability.
Palabras clave
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Palabras clave del proyecto indicadas por el coordinador del proyecto. No confundir con la taxonomía EuroSciVoc (Ámbito científico).
Programa(s)
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
Programas de financiación plurianuales que definen las prioridades de la UE en materia de investigación e innovación.
-
H2020-EU.1.1. - EXCELLENT SCIENCE - European Research Council (ERC)
PROGRAMA PRINCIPAL
Ver todos los proyectos financiados en el marco de este programa
Tema(s)
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Las convocatorias de propuestas se dividen en temas. Un tema define una materia o área específica para la que los solicitantes pueden presentar propuestas. La descripción de un tema comprende su alcance específico y la repercusión prevista del proyecto financiado.
Régimen de financiación
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
Régimen de financiación (o «Tipo de acción») dentro de un programa con características comunes. Especifica: el alcance de lo que se financia; el porcentaje de reembolso; los criterios específicos de evaluación para optar a la financiación; y el uso de formas simplificadas de costes como los importes a tanto alzado.
ERC-STG - Starting Grant
Ver todos los proyectos financiados en el marco de este régimen de financiación
Convocatoria de propuestas
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
Procedimiento para invitar a los solicitantes a presentar propuestas de proyectos con el objetivo de obtener financiación de la UE.
(se abrirá en una nueva ventana) ERC-2020-STG
Ver todos los proyectos financiados en el marco de esta convocatoriaInstitución de acogida
Aportación financiera neta de la UE. Es la suma de dinero que recibe el participante, deducida la aportación de la UE a su tercero vinculado. Considera la distribución de la aportación financiera de la UE entre los beneficiarios directos del proyecto y otros tipos de participantes, como los terceros participantes.
08002 Barcelona
España
Los costes totales en que ha incurrido esta organización para participar en el proyecto, incluidos los costes directos e indirectos. Este importe es un subconjunto del presupuesto total del proyecto.